
Improving File System Reliability with I/O Shepherding

Haryadi S. Gunawi∗, Vijayan Prabhakaran†, Swetha Krishnan∗,
Andrea C. Arpaci-Dusseau∗, Remzi H. Arpaci-Dusseau∗

∗Department of Computer Sciences †Microsoft Research
University of Wisconsin, Madison Silicon Valley

{haryadi, swetha, dusseau, remzi}@cs.wisc.edu, vijayanp@microsoft.com

ABSTRACT
We introduce a new reliability infrastructure for file systems called
I/O shepherding. I/O shepherding allows a file system developer to
craft nuancedreliability policies to detect and recover from a wide
range of storage system failures. We incorporate shepherding into
the Linux ext3 file system through a set of changes to the consis-
tency management subsystem, layout engine, disk scheduler, and
buffer cache. The resulting file system, CrookFS, enables a broad
class of policies to be easily and correctly specified. We imple-
ment numerous policies, incorporating data protection techniques
such as retry, parity, mirrors, checksums, sanity checks, and data
structure repairs; even complex policies can be implemented in less
than 100 lines of code, confirming the power and simplicity ofthe
shepherding framework. We also demonstrate that shepherding is
properly integrated, adding less than 5% overhead to the I/Opath.

Categories and Subject Descriptors:
D.4.3 [Operating Systems]: File Systems Management
D.4.5 [Operating Systems]: Reliability

General Terms: Design, Experimentation, Reliability
Keywords: I/O shepherding, storage, fault tolerance, reliability

1. INTRODUCTION
We present the design, implementation, and evaluation of a new

reliability infrastructure for file systems calledI/O shepherding.
I/O shepherding provides a simple yet powerful way to build ro-
bust reliability policies within a file system, and does so byadher-
ing to a single underlying design principle:reliability should be
a first-class file system concern.Current approaches bury reliabil-
ity features deep within the code, making both the intent andthe
realization of the approach to reliability difficult to understand or
evolve. In contrast, with I/O shepherding, the reliabilitypolicies
of a file system are well-defined, easy to understand, powerful, and
simple to tailor to environment and workload.

The I/O shepherd achieves these ends by interposing on each I/O
that the file system issues. The shepherd then takes responsibility
for the “care and feeding” of the request, specifically by executing a
reliability policy for the given block. Simple policies will do simple
things, such as issue the request to the storage system and return the
resulting data and error code (success or failure) to the filesystem
above. However, the true power of shepherding lies in the rich

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07,October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 ...$5.00.

set of policies that one can construct, including sophisticated retry
mechanisms, strong sanity checking, the addition of checksums to
detect data corruption, and mirrors or parity protection torecover
from lost blocks or disks. I/O shepherding makes the creation of
such policies simple, by providing a library of primitives that can
be readily assembled into a fully-formed reliability policy.

I/O shepherding focuses on reliability in the face of storage sys-
tem faults, as they are the primary cause of failure in modernstor-
age systems [26]. Modern disks, due to their complex and intricate
nature [2], have a wide range of “interesting” failure modes, in-
cluding latent sector faults [21], block corruption [13, 16], transient
faults [36], and whole-disk failure [31]. Thus, many of the prim-
itives provided in the shepherd programming environment center
around the detection of and recovery from storage system faults.

A major challenge in implementing I/O shepherding is proper
systems integration. We show how to take an existing journaling
file system, Linux ext3, and transform it into a shepherding-aware
file system, which we call CrookFS. Doing so requires changesto
the file system consistency management routines, layout engine,
disk scheduler, and buffer cache, as well as the addition of thread
support. Many of these alterations are necessary to pass infor-
mation throughout the system (e.g., informing the disk scheduler
where replicas are located so it can read the closer copy); some are
required to provide improved control to reliability policies (e.g.,
enabling a policy to control placement of on-disk replicas).

Of those changes, the most important interaction between the
shepherd and the rest of the file system is in the consistency man-
agement subsystem. Most modern file systems usewrite-ahead
logging to a journal to update on-disk structures in a consistent
manner [17]. Policies developed in the shepherd often add new on-
disk state (e.g., checksums, or replicas) and thus must also update
these structures atomically. In most cases, doing so is straightfor-
ward. However, we have found that journaling file systems suffer
from a generalproblem of failed intentions, which arises when the
intent as written to the journal cannot be realized due to disk fail-
ure during checkpointing. Thus, the shepherd incorporateschained
transactions, a novel and more powerful transactional model that
allows policies to handle unexpected faults during checkpointing
and still consistently update on-disk structures. The shepherd pro-
vides this supporttransparentlyto all reliability policies, as the re-
quired actions are encapsulated in various systems primitives.

We demonstrate the benefits of I/O shepherding through exper-
imentation divided into two parts. First, we show that I/O shep-
herding enables simple, powerful, and correctly-implemented re-
liability policies by implementing an increasingly complex set of
policies and demonstrating that they behave as desired under disk
faults. For example, we show CrookFS isflexibleby building poli-
cies that mimic the failure handling of different file systems such as
ReiserFS and NTFS, with only a few lines of policy code. We show
that CrookFS ispowerfulby implementing a broad range of poli-

cies, including single-disk parity protection to guard against data
loss due to latent sector errors. We demonstrate that CrookFS en-
ablesfine-grained policiesto be developed; for example, we show
that CrookFS can implement D-GRAID style protection for meta-
data [32], thus ensuring that files remain available despiteunex-
pected disk loss. Throughout the development of these reliability
policies, we show how one must consider environmental and work-
load characteristics to develop a well-reasoned policy.

Second, we show that I/O shepherding is effectively integrated
into the rest of the system. Specifically, we show how shepherd-
ing adds little overhead across a set of typical workloads and can
implement a broad range of policies efficiently. We also establish
that chained transactions operate as desired, by forcing the system
to crash at key points and observing that the final state of on-disk
structures is consistent. Finally, we show how a reliability policy
can interact with the file system layout engine to control replica
placement on disk, and subsequently that a shepherd-aware disk
scheduler can use knowledge of replicas to improve read perfor-
mance by fetching data from the closer copy. We thus conclude
that I/O shepherding is a powerful framework for building robust
and efficient reliability features within file systems.

The rest of this paper is as follows. We first present extended
motivation (§2) and then discuss the design of I/O shepherding (§3).
We next integrate the shepherd into CrookFS (§4) and explore how
to craft reliability policies and evaluate their overheads(§5). We
close by discussing related work (§6) and concluding (§7).

2. EXTENDED MOTIVATION
We now motivate two underlying assumptions of our work. First,

we argue that file systems should be built to handle faults that arise
from the storage system. Second, we posit that reliability policies
should be flexible, enabling the deployment of different policies
depending on the workload and environment.

2.1 The Need For Storage Fault Handling
Storage system failures arise for a large number of reasons.In

single-disk systems, despite a vast amount of internal machinery
to safeguard their operation [2, 20], disks are failing in anincreas-
ingly diverse manner. A recent study of millions of disks found that
latent sector faults are prevalent in the field [4], occurring in 8.5%
of SATA drives studied. Silent block corruption is an issue [13, 16]
and transient faults also occur [36]. Thus, besides whole-disk fail-
ure, one should expect both temporary and permanent single-block
faults and corruptions [30]. For a desktop PC with a single disk,
this has strong implications: a system should likely be prepared to
detect and recover from localized faults.

One way to increase reliability of the storage system is to add
more disks and a redundancy scheme [29]; although RAID tech-
niques can improve reliability, they do not solve all reliability prob-
lems, for three primary reasons [30]. First, RAID does not pro-
tect against faults that occur above the disk system (e.g., while the
data is in transit). Second, many RAID solutions are geared only
towards increasing reliability when entire disks fail; single block
faults are not often considered. Finally, most storage arrays do not
enable fine-grained policies, due to a lack of information [32].

Of course, file system failure can arise for a variety of otherrea-
sons. For example, systems software [8, 12] and operator error [7,
14, 28] are well-known sources of unreliability. However, recent
work demonstrates the largest source of faults in a well-built stor-
age system is disk failure [26]; therefore, we focus on adding relia-
bility features to cope with disk faults. Other techniques to improve
software resilience (e.g., Nooks [35]) are thus complimentary.

2.2 The Need For Flexible Policies
File systems have classically been deployed in diverse settings.

For example, a file system that runs on a desktop machine with a
single SATA drive is often the same file system that runs atop a
hardware RAID consisting of high-end SCSI drives connectedto
the system via a storage-area network.

Further, file systems typically run underneath a wide variety of
application workloads with differing needs. Again consider the
desktop, where the workload might consist of personal productiv-
ity applications such as email, word processing, and web brows-
ing, versus a back-end server that runs a web server and support-
ing database. In the former scenario, the user may wish for high
data reliability with modest storage overhead and reasonable per-
formance; in the latter, an administrator may desire the highest per-
formance possible combined with modest reliability. Despite the
clear difference in workload requirements, however, the same file
system is usually deployed.

From the perspective of reliability, the task of building a file sys-
tem would certainly be much easier if a single “best” approach
to reliability could be decided upon. Unfortunately, recent work
demonstrates that today’s commodity file systems take different ap-
proaches [30]. Linux ext3, for example, is highly sensitiveto read
faults, as it remounts the file system read-only if a single such fault
occurs. In contrast, many other file systems simply propagate read
failures to the calling application. Another point in the spectrum
is NTFS, which recognizes the sporadic nature of faults, retrying
many times before declaring an operation as failed.

Higher-end systems also employ varying approaches to reliabil-
ity. For example, systems from Tandem, Network Appliance, and
others use checksums in some form to protect against corruption [6,
34]; however, only recently has Network Appliance added protec-
tion against “lost writes” (i.e., writes the disk claims to have written
but has not [34]). Innovation in data protection strategiescontinues.

Thus, we believe that the best file system reliability strategy is a
function of the environment (e.g., how reliable the storage system is
and what types of faults are likely to occur) and the workload(e.g.,
how much performance overhead can be tolerated). What is needed
is a flexible environment for developing and deploying differing
reliability strategies, enabling developers or administrators to tailor
the behavior of the file system to the demands of the site. Thisneed
for flexibility drives the I/O shepherding approach.

3. I/O SHEPHERDING
We now describe the goals and design of a file system contain-

ing a general framework for providing reliability features. After
presenting the goals of I/O shepherding, we present the system ar-
chitecture and describe how developers specify reliability policies.

3.1 Goals
The single underlying design principle of this work is thatre-

liability should be a first-class file system concern.We believe a
reliability framework should adhere to the following threegoals:
simple specification, powerful policies, and low overhead.

3.1.1 Simple specification
We believe that developers should be able to specify reliability

policies simply and succinctly. Writing code for reliability is usu-
ally complex, given that one must explicitly deal with both misbe-
having hardware and rare events; it is especially difficult to ensure
that recovery actions remain consistent in the presence of system
crashes. We envision that file system developers will take onthe
role of faultpolicy writers; the I/O shepherd should ease their task.

To simplify the job of a policy writer, the I/O shepherd provides
a diverse set of detection and recovery primitives that hidemuch of
the complexity. For example, the I/O shepherd takes care of both
the asynchrony of initiating and waiting for I/O and keeps multiple
updates and new metadata consistent in the presence of crashes.
Policy writers are thus able to stitch together the desired reliability
policy with relatively few lines of code; each of the complexpoli-
cies we craft (§5) requires fewer than 80 lines of code to implement.
The end result: less code and (presumably) fewer bugs.

3.1.2 Powerful policies
We believe the reliability framework should enable not onlycor-

rect policies, but more powerful policies than currently exist in
commodity file systems today. Specifically, the framework should
enable composable, flexible, and fine-grained policies.

A composablepolicy allows the file system to use different se-
quences of recovery mechanisms. For example, if a disk read fails,
the file system can first retry the read; if the retries continue to fail,
the file system can try to read from a replica. With shepherding,
policy writers can compose basic detection and recovery primitives
in the manner they see fit.

A flexible policy allows the file system to perform the detec-
tion and recovery mechanisms that are most appropriate for the
expected workload and underlying storage system. For example,
one may want different levels of redundancy for temporary files in
one volume and home directories in another. Further, if the under-
lying disk is known to suffer from transient faults, one may want
extra retries in response. With I/O shepherding, administrators can
configure these policy variations for each mounted volume.

A fine-grainedpolicy is one that takes different recovery actions
depending on the block that has failed. Different disk blocks have
different levels of importance to the file system; thus, somedisk
faults are more costly than others and more care should be taken
to prevent their loss. For example, the loss of disk blocks con-
taining directory contents is catastrophic [32]; therefore, a policy
writer can specify that all directory blocks be replicated.With I/O
shepherding, policies are specified as a function of block type.

3.1.3 Low overhead
Users are unlikely to pay a large performance cost for improved

reliability. We have found that it is critical to properly integrate
reliability mechanisms with the consistency management, layout,
caching, and disk scheduling subsystems. Of course, reliability
mechanisms do not always add overhead; for example, a smart
scheduler can utilize replicas to improve read performance[19, 39].

3.2 Architecture
To manage the storage system in a reliable way, the I/O shepherd

must be able to interpose on every I/O request and response, natu-
rally leading to an architecture in which the shepherd is positioned
between the file system and disks (Figure 1). As shown therein, I/O
requests issued from different components of a file system (e.g., the
file system, journaling layer, and cache) are all passed to the I/O
shepherd. The shepherd unifies all reliability code in a single loca-
tion, making it easier to manage faults in a correct and consistent
manner. The shepherd may modify the I/O request (e.g., by remap-
ping it to a different disk block) or perform additional requests (e.g.,
by reading a checksum block) before sending the request to disk.
When a request completes, the response is again routed through the
shepherd, which performs the desired fault detection and recovery
actions, again potentially performing more disk operations. After
the shepherd has executed the reliability policy, it returns the re-
sponse (success or failure) to the file system.

F i l e S y s t e mJ o u r n a l i n g C a c h e

D i s kG e n e r i c I / O [S c h e d u l i n g , D e v i c e I / O]
C rookFS I / O S h e p h e r dM a p sa n do t h e rs t a t eP o l i c yT a b l es u p e ri n o d ed i rd a t a R F C o kP o l i c yC o d eP o l i c yP r i m i t i v e s M e t ad a t a

Figure 1:System Architecture. The architecture of a file system con-
taining an I/O shepherd is shown. The file system proper (including jour-
naling) and caching subsystems sit above the I/O shepherd, but have been
modified in key locations to interact with the shepherd as necessary. The
shepherd itself consists of a policy table, which points to policy code that
dictates the detection and recovery strategy for that particular block type.
Beneath the shepherd is the generic I/O layer (including disk scheduling,
which is slightly modified as well) and one (or more) disks.

3.2.1 Policy Table and Code
With I/O shepherding, the reliability policy of the file system is

specified by apolicy table; this structure specifies which code to
execute when the file system reads or writes each type of on-disk
data structure (e.g., superblock, inode, or directory). Each entry
in the table points topolicy code, which defines the sequence of
actions taken for a block of a particular type. For example, given
an ext3-based file system, a policy writer can specify a different
policy for each of its 13 block types; the table could thus mandate
triple replication of the superblock, checksum and parity protection
for other metadata, and an aggressive retry scheme for user data.

Although this design does not directly support different policies
for individual files, the I/O shepherd allows a different policy table
per mounted file system. Thus, administrators can tailor thepolicy
of each volume, a basic entity they are accustomed to managing.
For example, a/tmp volume could employ little protection to ob-
tain high performance while an archive could add checksums and
parity to improve reliability at some performance cost.

3.2.2 Policy Metadata
To implement useful policies, an I/O shepherd often requires ad-

ditional on-disk state to track the location of various blocks it is
using (e.g., the location of checksums, replicas, or parity blocks).
Thus, to aid in the management of persistent metadata, the I/O
shepherd framework providesmaps. Some commonly used maps
are aCMap to track checksum blocks, anRMap to record bad block
remappings, and anMMap to track multiple replicas.

A policy can choose to use either astaticor dynamicmap for a
particular type of metadata. With static mapping, the association
between a given on-disk block and its checksum or replica location
is fixed when the file system is created. With a dynamic map, new
associations between blocks can be created over time.

There are obvious trade-offs to consider when deciding between
static and dynamic maps. Static maps are simple to maintain but
inflexible; for example, if a static map is used to track a block and
its copy, and one copy becomes faulty due to a latent sector error,
the map cannot be updated with a new location of the copy.

Dynamic maps are more flexible, as they can be updated as the
file system is running and thus can react to faults as they occur.
However, dynamic maps must be reflected to disk for reliability.
Thus, updating dynamic maps consistently and efficiently isa ma-
jor challenge; we describe the problem and our approach to solving
it in more detail below (§4.1).

3.2.3 Policy Primitives
To ease the construction of policy code, the shepherd provides a

set ofpolicy primitives. The primitives hide the complexity inher-
ent to reliable I/O code; specifically, the primitives ensure that pol-
icy code updates on-disk structures in a single transaction. Clearly,
a fundamental tension exists here: as more functionality isencap-
sulated in each primitive, the simpler the policy code becomes, but
the less control one has over the reliability policy. Our choice has
generally been to expose more control to the policy writers.

The I/O shepherd provides five classes of reliability primitives.
All primitives return failure when the storage system itself returns
an error code or when blocks do not have the expected contents.
Read and Write: The I/O shepherd contains basic primitives for
reading and writing either a single block or a group of blockscon-
currently from disk. A specialized primitive reads from mirrored
copies on disk: given a list of blocks, it reads only the blockthat
the disk scheduler predicts has the shortest access time.
Integrity: On blocks that reside in memory, primitives are pro-
vided to compute and compare checksums, compare multiple blocks,
and perform strong sanity checks (e.g., checking the validity of di-
rectory blocks or inodes).
Higher-level Recovery: The I/O shepherd contains primitives to
stop the file system with a panic, remount the file system read-only,
or even reboot the system. Primitives are also provided thatperform
semantic repair depending upon the type of the block (e.g., an inode
or a directory block) or that run a fullfsck across the disk.
Persistent Maps: The I/O shepherd provides primitives for look-
ing up blocks in an indirection map and for allocating (or reallocat-
ing and freeing) new entries in such a map (if it is dynamic).
Layout: To allow policy code to manage blocks for its own use
(e.g., for checksums, remapped blocks, and replicas), the I/O shep-
herd can allocate blocks from the file system. One primitive ex-
poses information about the current layout in the file systemwhile
a second primitive allocates new blocks, with hooks to specify pref-
erences for block placement. With control over block placement,
policy code can provide trade-offs between performance andrelia-
bility (e.g., by placing a replica near or far from its copy).

3.3 Example Policy Code
The I/O shepherd enables one to specify reliability policies that

are traditionally implemented across different levels of the stor-
age stack. For example, one can specify policies that operate on
a single block and are often performed within disks (e.g., retrying,
remapping, and checksums), policies that operate across multiple
blocks or multiple disks (e.g., mirrors and parity), and finally, one
can specify policies requiring semantic information aboutthe failed
block and are usually performed by the file system (e.g., stopping
the file system, data structure repair, and fsck). A shepherdenables
policies that compose all of these strategies.

We now show the simplicity and power of the shepherd through a
number of examples. The names of all policy primitives beginwith
IOS for clarity. We simplify the pseudo-code by ignoring some of
the error codes that are returned by the policy primitives, such as
IOS MapLookup andIOS MapAllocate (with irony noted).

The first example policy is based loosely on NTFS [30]. The
NTFS policy tries to keep the system running when a fault arises

by first retrying the failed read or write operation a fixed number of
times; if it is unable to complete the operation, the fault issimply
propagated to the application. We show the read version of the code
here (the write is similar).

NTFSRead(DiskAddr D, MemAddr A)
for (int i = 0; i < RETRY_MAX; i++)

if (IOS_Read(D, A) == OK)
return OK;

return FAIL;

The second example policy loosely emulates the behavior of
ReiserFS [30]. This policy chooses reliability over availability;
whenever a write fault occurs, the policy simply halts the file sys-
tem. By avoiding updates after a fault, this conservative approach
minimizes the chance of further damage.

ReiserFSWrite(DiskAddr D, MemAddr A)
if (IOS_Write(D, A) == OK)

return OK;
else

IOS_Stop(IOS_HALT);

The next two examples show the ease with which one can spec-
ify policies that detect block corruption.SanityRead performs
type-specific sanity checking on the read block using a shepherd
primitive; note in this example how the block type can be passed to
and used by policy code.ChecksumRead uses checksums to de-
tect block corruption; the policy code first finds the location of the
checksum block, then concurrently reads both the stored checksum
and the data block (the checksum may be cached), and then com-
pares the stored and newly computed checksums.

SanityRead(DiskAddr D, MemAddr A, BlockT T)
if (IOS_Read(D, A) == FAIL)

return FAIL;
return IOS_SanityCheck(A, T);

ChecksumRead(DiskAddr D, MemAddr A)
DiskAddr cAddr;
ByteOffset off;
CheckSum onDisk;
IOS_MapLookupOffset(ChMap, D, &cAddr, &off);
// read from checksum and D concurrently
if (IOS_Read(cAddr, &onDisk, D, A)==FAIL)

return FAIL;
CheckSum calc = IOS_Checksum(A);
return IOS_Compare(onDisk, off, calc);

The next two examples compare how static and dynamic maps
can be used for tracking replicas.StaticMirrorWrite as-
sumes that the mirror map,MMap, was configured for each block
when the file system was created.DynMirrorWrite checks to
see if a copy already exists for the block being written to; ifthe
copy does not exist, the code picks a location for the mirror and al-
locates (and persistently stores) an entry inMMap for this mapping.

StaticMirrorWrite(DiskAddr D, MemAddr A)
DiskAddr copyAddr;
IOS_MapLookup(MMap, D, ©Addr);
// write to both copies concurrently
return (IOS_Write(D, A, copyAddr, A));

DynMirrorWrite(DiskAddr D, MemAddr A)
DiskAddr copyAddr;
// copyAddr is set to mirrored block
// or NULL if no copy of D exists
IOS_MapLookup(MMap, D, ©Addr);
if (copyAddr == NULL)

PickMirrorLoc(MMap, D, ©Addr);
IOS_MapAllocate(MMap, D, copyAddr);

return (IOS_Write(D, A, copyAddr, A));

The final two policy examples show how blocks can be remapped;
the map of remapped blocks is most naturally a dynamic map,

since the shepherd does not knowa priori which writes will fail.
RemapWrite is responsible for the remapping; if a write opera-
tion fails, the policy code picks a new location for that block, al-
locates a new mapping for that block inRMap, and tries the write
again. RemapRead checksRMap to see if this block has been
previously remapped; the read to the disk is then redirectedto the
possibly new location. Of course, all of these policies can be ex-
tended, for example, by retrying if the disk accesses fail orstopping
the file system on failure.

RemapWrite(DiskAddr D, MemAddr A)
DiskAddr remap;
// remap is set to remapped block
// or to D if not remapped
IOS_MapLookup(RMap, D, &remap);
if (IOS_Write(remap, A) == FAIL)

PickRemapLoc(RMap, D, &remap);
IOS_MapAllocate(RMap, D, remap);

return IOS_Write(remap, A);
RemapRead(DiskAddr D, MemAddr A)

DiskAddr remap;
IOS_MapLookup(RMap, D, &remap);
return IOS_Read(remap, A);

4. BUILDING CROOKFS
We now describe how to integrate I/O shepherding into an exist-

ing file system, Linux ext3. For our prototype system, we believe
that it is important to work with an existing file system in order to
leverage the optimizations of modern systems and to increase the
likelihood of deployment. We refer to the ext3 variant with I/O
shepherding as CrookFS, named for the hooked staff of a shepherd.

Integrating shepherding with ext3 instead of designing a sys-
tem from scratch does introduce challenges in that the shepherd
must explicitly interact with numerous components of the file sys-
tem, including the journal, buffer cache, layout algorithm, and disk
scheduler. We devote most of our discussion to how we integrate
CrookFS with ext3 journaling to ensure consistency, and then de-
scribe integration with other key subsystems.

4.1 Consistency Management
In order to implement some reliability policies, an I/O shepherd

requires additional data (e.g., checksum and replica blocks) and
metadata (e.g., persistent maps). Keeping this additional informa-
tion consistent can be challenging. As an example, considerpolicy
code that dynamically creates a replica of a block; doing so requires
picking available space on disk for the replica, updating the mirror
map to record the location of the replica, and writing the original
and replica blocks to disk. One would like these actions to beper-
formed atomically despite the presence of crashes.

Given that ext3 employs journaling for file system metadata and
user data, a natural question is whether the ext3 journal canalso be
used for consistently updating CrookFS data and metadata. There-
fore, we briefly review how journaling is performed in ext3.

4.1.1 Journaling Basics
Ext3 and most other current commodity file systems (including

Reiser3, IBM JFS, and NTFS) use journaling [17]. To describe
the basics of journaling, we borrow the terminology of ext3 [38].
Journaling exists in three different modes (data, ordered,and write-
back), each of which provides different levels of consistency. In
data journaling, all traffic to disk is first committed to a log(i.e.,
the journal) and then checkpointed to its final on-disk location. The
other journaling modes journal only metadata, enabling consistent
update for file systems structures but not for user data. Given that
the goal of I/O shepherding is to enable highly robust file systems,
we build upon the most robust form of journaling, data journaling.

M e mL o gF i x e d W r i t e C o m m i t C h e c k p o i n t R e l e a s e
T 0 T 1 T 2 T 3B I DB I D B I D B I D B I Dt b t cB I Dt b t c B I Dt b t c IDB IDB

Figure 2:Journaling Data Flow. The figure shows the series of actions
that take place in data journaling mode. Both in-memory (top) and on-disk
(bottom) states are shown.D is a data block,I an inode,B a bitmap,tb the
beginning of a transaction, andtc the commit block. Darker gray shading
indicates that blocks have been released after checkpointing.

The sequence of operations when an application appends a data
block D to a file is shown in Figure 2. At timeT0, the data block
D and bitmapB are updated in memory and a pointer toD is added
to the inodeI ; all three blocks (D, I, B) now sit in memory and
are dirty. At timeT1, the three blocksD, I, and B are wrapped
into a transactionand the journaling layercommitsthe transaction
(which includes markers for the starttb and endtc of the transac-
tion) to the journal; the blocks are now marked clean but are still
pinned in memory. After the commit step is complete, atT2, the
blocks arecheckpointedto their final fixed locations. Finally, at
T3, the transaction isreleasedand all three blocks are unpinned
and can be flushed from memory and the log space reused. Note
that multiple transactions may be in the checkpointing stepconcur-
rently (i.e., committed but not yet released). If the system crashes,
the file system will recover by replaying transactions in thejournal
that are committed but not yet released.

4.1.2 Strawman Shepherds
To understand how CrookFS uses the ext3 journal to maintain

consistency, we begin with two strawman approaches. Neither work;
rather, we use them to illustrate some of the subtleties of the prob-
lem. In theearly strawmanapproach, the shepherd interposes on
the preceding journal writes to insert its own metadata for this
transaction. This requires splitting policy code for a given block
type into two portions: one for the operations to be performed on
the journal write for that block and one for operations on a check-
point. In thelate strawman, the shepherd appends a later trans-
action to the journal containing the needed information. This ap-
proach assumes that the policy code for a given block is invoked
only at checkpoint time. We now describe how both strawmen fail.

First, consider theDynMirrorWritepolicy (presented in§3.3).
On the first write to a blockD, the policy code picks, allocates, and
writes to a mirror blockC (denotedcopyAddr in the policy code);
at this time, the data bitmapB’ and the mirror mapM are also
updated to account forC. All of these actions must be performed
atomically relative to the writing ofD on disk.

The early strawman can handle theDynMirrorWrite policy,
as shown in Figure 3. When the early strawman sees the entry
for D written to the journal (T1), it invokes policy code to allocate
an entry forC in M andB’ and to insertM andB’ in the current
transaction. WhenD is later checkpointed (T2), similar policy code
is again invoked so that the copyC is updated according to the
mirror mapM . With the early strawman, untimely crashes do not
cause problems because all metadata is in the same transaction.

Now, consider theRemapWritepolicy (presented in§3.3). This
policy responds to the checkpoint failure of a blockD by remapping
D to a new location,R (denotedremap in the policy code). How-
ever, the early strawman cannot implement this policy. As shown
in Figure 4, after the write to a data blockD fails (T2) the policy
wants to remap blockD to R (T3), which implies that the bitmap
andRMap are modified (B’ andM). However, it is too late to mod-

M e mL o gF i x e d W r i t e C o m m i t C h e c k p o i n t R e l e a s e
T 0 T 1 T 2 T 3I DB I D B ' I D I D B I Dt bB I Dt b B I Dt b M IDB ' IDB 'MB ' t c t cB 'M C M Ct cB ' MB ' B '

Figure 3: Early Strawman for DynMirrorWrite. The figure
shows how the early strawman writes to a replica of a data block D.M e mL o gF i x e d W r i t e C o m m i t C P F a i l R e l e a s e

T 0 T 1 T 2 T 4I DB I D I D I D B I Dt bB I Dt b B I Dt b I It c RR e m a p
T 3I D IB I Dt b RMB ' C r a s h

T 5 IRB BB D t c t c t cDB B ' B 'M MB BD D
Figure 4:Early Strawman for RemapWrite. The figure illustrates
how the early strawman cannot deal with the problem of failedintentions.

ify the transaction that has been committed. Thus, if a crashoccurs
(T5) after the transaction is released (T4), all metadata changes will
be discarded and the disk will be in an inconsistent state. Specifi-
cally, the data blockD is lost since the modifiedRMap that has the
reference toR has been discarded.

More generally, the early strawman cannot handle any check-
point failures that result in metadata changes, because it must cal-
culatea priori to the actual checkpoint what will happen at check-
point time. We refer to this as the problem offailed intentions.
Failed intentions occur when a commit to the journal succeeds but
the corresponding checkpoint does not; the intent of the update (as
logged in the journal) cannot be realized due to checkpoint failure.

We now examine the late strawman which only invokes policy
code at checkpoint time. Given that it is “too late” to modify
a transaction at checkpoint time, the late strawman adds another
transaction with the new metadata. Unfortunately, the latestraw-
man cannot correctly handle theDynMirrorWrite policy, as
shown in Figure 5. During the checkpoint of blockD (T2), the late
strawman invokes the policy code, creates and updates the copy C
as desired. After this transaction has been released (T3), a new
transaction containingB’ andM is added to the journal (T4a). The
problem with the late strawman is that it cannot handle a system
crash that occurs between the two transactions (i.e., T4b, which can
occur betweenT3 andT4a): D will not be properly mirrored with
a reachable copy. When the file system recovers from this crash,
it will not replay the transaction writingD (andC) because it has
already been released and it will not replay the transactioncontain-
ing B’ andM because it has not been committed; as a result, copy
C will be unreachable. Thus, the timing of the new transactionis
critical and must be carefully managed, as we will see below.

4.1.3 Chained Transactions
We solve the problem of failed intentions with the development

of chained transactions. With this approach, like the late strawman,
all metadata changes initiated by policy code are made at check-
point time and are placed in a new transaction; however, unlike
the late strawman, this new chained transaction is committed to the
journalbeforethe old transaction is released. As a result, a chained
transaction makes all metadata changes associated with thecheck-
point appear to have occurred at the same time.

To illustrate chained transactions we consider a reliability pol-
icy that combines mirroring and remapping. We consider the case
where this is not the first write to the blockD (i.e., an entry in the

M e mL o gF i x e d W r i t e C o m m i t C P Ä M i r r o r R e l e a s e
T 0 T 1 T 2 T 4 aI DB I D I D B I Dt bB I Dt b t ct bIt c C N e w T x

T 3I D IB I Dt b MB ' C r a s h
T 4 b IB D t c t cB B 'M MB BD DC B ' M MB 'B DC I B ' C

Figure 5: Late Strawman for DynMirrorWrite. The figure
shows the incorrect timing of the new transaction commit.M e mL o gF i x e d W r i t e C o m m i t C P F a i l R e m a p M i r r o r

T 0 T 1 T 2 T 3B I DB I D B I D B I DB I Dt b t c B I Dt b t cIDB IDB C h a i n e d T x
T 4B I D IDB R e l e a s e

T 5B I D IDBB I Dt b t c B I Dt b t c B I Dt b t cC t b t cM ' C Ct b t cM 'B ' B 'B ' M 'B ' B 'C M M 'M '
Figure 6:Chained Transactions forRemapMirrorWrite. The
figure shows how chained transactions handle failed intentions.

mirror map should already exist) and it is the write to the copy C
that fails. Code pathsnot taken aregray and slanted.

RemapMirrorWrite(DiskAddr D, MemAddr A)
DiskAddr copy, remap;
Status status1 = OK, status2 = OK;
IOS_MapLookup(MMap, D, ©);
// remap is set to D if not remapped
IOS_MapLookup(RMap, D, &remap);
if (copy == NULL)

PickMirrorLoc(MMap, D, ©);
IOS_MapAllocate(MMap, D, copy);

if (IOS_Write(remap, A, copy, A) == FAIL)
if (IOS_Failed(remap))

PickRemapLoc(RMap, D, &remap);
IOS_MapAllocate(RMap, D, remap);
status1 = IOS_Write(remap, A);

if (IOS_Failed(copy))
PickMirrorLoc(MMap, D, ©);
IOS_MapAllocate(MMap, D, copy);
status2 = IOS_Write(copy, A);

return ((status1==FAIL)||(status2==FAIL));

Figure 6 presents a timeline of the activity in the system with
chained transactions. With chained transactions, committing the
original transaction is unchanged as seen at timesT0 andT1 (pol-
icy code will be invoked when each of the blocks in the journal
is written, but its purpose is to implement the reliability policy of
the journal itself). When the data blockD is checkpointed, the
RemapMirrorWrite policy code is invoked forD. The policy
code finds the copy location ofC (denotedcopy) and the po-
tentially remapped location ofR (denotedremap). In our exam-
ple, we assume that writing to the copyC fails (T2); in this case,
the policy code allocates a new location forC (hence dirtying the
bitmap, B’), writes the copy to a new location, and updates the
mirror mapM’ (T3). Our integration of the shepherd primitive,
IOS MapAllocate, with the ext3 journaling layer ensures that
the chained transaction containingB’ andM’ is committed to the
journal (T4) before releasing the original transaction (T5). At time
T6 (not shown), when the chained transaction is checkpointed,the
blocksB’ andM’ are finally written to their fixed locations on disk;
given that these are normal checkpoint writes, the relevantpolicy
code will be applied to these updates.

With a chained transaction, a crash cannot occur “between” the
two related transactions, because the second transaction is always
committed before the first is released. If the system crashesbefore
the first transaction is released, all operations will be replayed.

Chained transactions ensure that shepherd data and metadata are
kept consistent in the presence of crashes. However, if one is not
careful, chained transactions introduce the possibility of deadlock.
Specifically, because CrookFS now holds the previous checkpoint
while waiting to commit the chained transaction, we must avoid
the two cases that can lead to circular dependencies. First,CrookFS
must ensure that sufficient space exists in the journal for all chained
transactions; this constrains the number of remappings (and subse-
quent chained transactions) that can occur in any policy code. Sec-
ond, CrookFS must use shadow copies when updating a shepherd
metadata block that exists in a previous transaction (just as it does
for its own metadata), instead of acquiring locks.

To test the chained transaction infrastructure in the presence of
system crashes, we have constructed a testing framework that in-
serts crashes at interesting points in the journaling sequence. We
have injected 16 crash points during journaling updates and8 crash
points during recovery. We have verified that in all cases therecov-
ery process brings the file system to the expected on-disk state.

4.1.4 Non-Idempotent Policies
To maintain consistency, all failure scenarios must be consid-

ered, including repeated crashes during recovery. Repeated crashes
will cause CrookFS to replay the same transactions and theircor-
responding checkpoints. In such scenario, onlyidempotentpolicy
code will work correctly.

For example, consider a policy that protects data blocks with par-
ity. Although parity can be computed using an idempotent equation
(P = D1 ⊕ D2 ⊕ ... ⊕ Dn), this approach performs poorly be-
causeN − 1 blocks must be read every time a block is modified.
However, the more efficient way of computing parity (Pnew =

Pold ⊕ Dold ⊕ Dnew) is non-idempotent sincePold andDold will
be overwritten withPnew andDnew , respectively. Thus, repeated
journal replays will incorrectly calculate the parity block.

To handle non-idempotent policies such as parity, CrookFS pro-
vides an old-value logging mechanism [15]. The old-value log
annotates versions to distinguish old and new values, and writes
the old data and its corresponding version into the log atomically.
Thus, non-idempotent policy code must take care to read the old
values and log them into the old-value log, using support within
CrookFS. Simplified policy code forParityWrite is as follows.

ParityWrite(DiskAddr D, MemAddr aNew)
DiskAddr P;
MemAddr aOld, apOld, apNew;
IOS_MapLookup(PMap, D, &P);
if (IOS_ReadStable(D,aOld,P,apOld) == FAIL)

return FAIL;
if (IOS_WriteAndLog(D,aOld,P,apOld) == FAIL)

return FAIL;
apNew = ComputeParity(apOld, aOld, aNew);
return (IOS_Write(D, aNew, P, apNew));

4.1.5 Reliability of the Journal and Shepherd Maps
A final complication arises when the reliability policy wishes

to increase the protection of the journal or of shepherd metadata
itself. Although there are a large number of reasonable policies
that do not add protection features to the journal (since it is only
read in the event of an untimely crash), some policies might wish to
add features (e.g., replication or checksumming). The approaches
we describe above do not work for the journal, since they use the
journal itself to update other structures properly. Thus, we treat
journal replication, checksumming, and other similar actions as a
special case, mandating a restricted set of possible policies. Similar
care must be taken when applying policy to shepherd metadatasuch
as is found in the various map structures (e.g., the mirror map).

4.2 System Integration
To build effective reliability policies, the shepherd mustinter-

act with other components of the existing file system. Below,we
discuss these remaining technical hurdles.

4.2.1 Semantic Information
To implement fine-grained policies, the shepherding layer must

have information about the current disk request; in our implemen-
tation, shepherding must know the the type of each block (e.g.,
whether it is an inode or a directory) and whether the requestis
a read or a write in order to call the correct policy code as specified
in the policy table.

In the case where requests are issued directly from the file sys-
tem, acquiring this information is straightforward: the file system
is modified to pass the relevant information with each I/O call.
When I/O calls are issued from common file system layers (e.g.,
the generic buffer cache manager), extra care must be taken.First,
the buffer cache must track block type for its file blocks and pass
this information to the shepherd when calling into it. Second, the
buffer cache must only pass this information to shepherd-aware file
systems. A similar extension was made to the generic journaling
and recovery layers to track the type of each journaled block.

4.2.2 Threads
I/O shepherding utilizes threads to handle each I/O requestand

any related fault management activity. A thread pool is created
at mount time, and each thread serves as an execution contextfor
policy code. Thus, instead of the calling context issuing a request
directly and waiting for it to complete, it enqueues the request and
lets a thread from the pool handle the request. This thread then
executes the corresponding policy code, returning successor failure
as dictated by the policy. When the policy code is complete, the
caller is woken and passed this return code.

We have found that a threaded approach greatly simplifies the
task of writing policy code, where correctness is of paramount im-
portance; without threads, policy code was split into a series of
event-based handlers that executed before and after each I/O, often
executing in interrupt context and thus quite difficult to program. A
primary concern of our threaded approach is overhead, whichwe
explore in Section 5.2.

4.2.3 Legacy Fault Management
Because the shepherd now manages file system reliability, we

removed the existing reliability code from ext3. Thus, the upper
layers of CrookFS simply propagate faults to the application. Note
that some sanity checks from ext3 are kept in CrookFS, since they
are still useful in detecting memory corruption.

One issue we found particularly vexing was correct error propa-
gation; a closer look revealed that ext3 often accidentallychanged
error codes or ignored them altogether. Thus, we developed asim-
ple static analysis tool to find these bugs so we could fix them.To
date we have found and fixed roughly 90 places within the code
where EIO was not properly propagated; we are currently building
analysis tools to more thoroughly address this problem.

4.2.4 Layout Policy
Fault management policies that dynamically require disk space

(e.g., for checksum or replica blocks) must interact with the file
system layout and allocation policies. Since reliability policies are
likely to care about the location of the allocated blocks (e.g., to
place blocks away from each other for improved reliability), we
have added two interfaces to CrookFS. The first exposes informa-
tion about the current layout in the file system. The second allows
a reliability policy to allocate blocks with options to steer block
placement. Policy code can use these two interfaces to querythe
file system and request appropriate blocks.

Changes in Core OS
Chained transactions 26
Semantic information 600
Layout and allocation 176
Recovery 108
Total 910

Shepherd infrastructure
Thread model 900
Data structures 743
Read/Write + Chained Transactions 460
Layout and allocation 66
Scheduling 220
Sanity + Checksums + fsck + Mirrors 429
Support for multiple disks 645
Total 3463

Table 1:CrookFS Code Complexity. The table presents the amount
of code added to implement I/O shepherding as well as a breakdown of
where that code lives. The number of lines of code is counted by tallying
the number of semi-colons in code that we have added or changed.

4.2.5 Disk Scheduling
For improved performance, the disk scheduler should be inte-

grated properly with reliability policies. For example, the sched-
uler should know when a block is replicated, and access the nearer
block for better performance [19, 39].

We have modified the disk scheduler to utilize replicas as fol-
lows. Our implementation inserts a request for each copy of ablock
into the Linux disk scheduling queue; once the existing scheduling
algorithm selects one of these requests to be serviced by disk, we
remove the other requests. When the request completes, the sched-
uler informs the calling policy which replica was serviced,so that
faults can be handled appropriately (e.g., by trying to read the other
replica). Care must be taken to ensure that replicated requests are
not grouped and sent together to the disk.

4.2.6 Caching
The major issue in properly integrating the shepherd with the

existing buffer cache is ensuring that replicas of the same data do
not simultaneously reside in the cache, wasting memory resources.
By placing the shepherd beneath the file system, we circumvent
this issue entirely by design. When a read is issued to a blockthat
is replicated, the scheduler decides to read one copy or the other;
while this block is cached, the other copy will never be read,and
thus only a single copy can reside in cache.

4.2.7 Multiple Disks
One final issue arose from our desire to run CrookFS on mul-

tiple disks to implement more interesting reliability policies. To
achieve this, we mount multiple disks using a concatenatingRAID
driver [11]. The set of disks appears to the file system as one large
disk, with the first portion of the address space representing the first
disk, the second portion of the address space representing the sec-
ond disk, and so forth. By informing CrookFS of the boundary ad-
dresses between disks, CrookFS allocation policies can place data
as desired across disks (e.g., data on one disk, a replica on another).

4.2.8 Code Complexity
Table 1 summarizes the code complexity of CrookFS. The table

shows that the changes to the core OS were not overly intrusive
(i.e., 910 C statements were added or changed); the majority of the
changes were required to propagate the semantic information about
the type of each block through the file system. Many more linesof
code (i.e., 3463) were needed to implement the shepherd infras-
tructure itself. We are hopeful that incorporating I/O shepherding
into file systems other than ext3 will require even smaller amounts
of code, given that much of the infrastructure can be reused.

PostMark TPC-B SSH-Build
Linux ext3 1.00 1.00 1.00
Propagate 1.00 1.05 1.01
Retry and Reboot 1.00 1.05 1.01
Parity 1.14 1.27 1.02
MirrorNear 1.59 1.41 1.04
MirrorF ar 1.65 1.87 1.06
Sanity Check 1.01 1.05 1.01
Multiple Lines of Defense 1.10 1.28 1.01

Table 2:Performance Overheads. The table shows the performance
overhead of different policies in CrookFS relative to unmodified ext3. Three
workloads are run: PostMark, TPC-B, and ssh. Each workload is run five
times; averages are reported (there was little deviation).Running times for
standard ext3 on PostMark, TPC-B, and SSH-Build are 51, 29.33, 68.19
seconds respectively. The Multiple Lines of Defense policyincorporates
checksums, sanity checks, and mirrors.

Propagate 8 Mirror 18
Reboot 15 Sanity Check 10
Retry 15 Multiple Lines of Defense 39
Parity 28 D-GRAID 79

Table 3:Complexity of Policy Code. The table presents the number
of semicolons in the policy code evaluated in Section 5.

5. CRAFTING A POLICY
We now explore how I/O shepherding simplifies the construction

of reliability policies. We make two major points in this section.
First, the I/O shepherding framework does not add a significant
performance penalty. Second, a wide range of useful policies can
be easily built in CrookFS, such as policies that propagate errors,
perform retries and reboots, policies that utilize parity,mirroring,
sanity checks, and checksums, and policies that operate over mul-
tiple disks. Overall, we find that our framework adds less than 5%
performance overhead on even I/O-intensive workloads and that no
policy requires more than 80 lines of policy code to implement.

We also make two relatively minor points. First, effective yet
simple reliability policies (e.g., retrying requests and performing
sanity checks) are not consistently deployed in commodity file sys-
tems, but they should be to improve availability and reliability. Sec-
ond, CrookFS is integrated well with the other components ofthe
file system, such as layout and scheduling.

5.1 Experimental Setup
The experiments in this section were performed on an Intel Pen-

tium 4 machine with 1 GB of memory and up to 4 120 GB 7200
RPM Western Digital EIDE disks (WD1200BB). We used the Linux
2.6.12 operating system and built CrookFS from ext3 therein.

To evaluate the performance of different reliability policies under
fault-free conditions, we use a set of well-known workloads: Post-
Mark [22], which emulates an email server, a TPC-B variant [37]
to stress synchronous updates, and SSH-Build, which unpacks and
builds the ssh source tree. Table 2 shows the performance on Post-
Mark, TPC-B, and SSH-Build of eight reliability policies explored
in more detail in this section, relative to unmodified ext3.

To evaluate the reliability policies when faults occur, we stress
the file system using type-aware fault injection [30] with a pseudo-
device driver. To emulate a block failure, the pseudo-device simply
returns the appropriate error code and does not issue the operation
to the underlying disk. To emulate corruption, the pseudo-device
changes bits within the block before returning the data. Thefault
injection is type aware in that it can be selectively appliedto each
of the 13 different block types in ext3.

Unmodifed Ext3 Policy Reboot Policy Retry Policypath op en* ch mod* read readli nk g etdi r c reat li nk mkdi r rena me s ymli nk wri t e t runc rmdi r unli nk mount f s ync* rec overyumount l og wri t e path op en* ch mod* read readli nk g etdi r c reat li nk mkdi r rena me s ymli nk wri t e t runc rmdi r unli nk mount f s ync* rec overyumount l og wri t e path op en* ch mod* read readli nk g etdi r c reat li nk mkdi r rena me s ymli nk wri t e t runc rmdi r unli nk mount f s ync* rec overyumount l og wri t ei n o d ed i rb i t m a pi b i t m a pi n d i r e c td a t as u p e rg T d e s cj T s u p e rj T r e v o k ej T d e s cj T c o m m i tj T d a t a r e t r y , p r o p a g a t e , s t o p ,K e y : n o r e c o v e r y
Figure 7:Comparison of Ext3, Reboot, and Retry Policies.The table shows how unmodified ext3 (left) and CrookFS with a reboot (middle) and a
retry (right) policy react to read faults. Along the x-axis,different workloads are shown; each workload stresses either a posix API call or common file system
functionality (e.g., path lookup). Along the y-axis, the different data structures of the file system are presented. Each (x,y) location presents the results of a
read fault injection of a particular data structure (y) under the given workload (x). The four symbols (/, −, |, andO) represent the detection and recovery
techniques used by the file systems. If multiple techniques are used, the symbols are superimposed. A gray box indicates the workload does not access the
given block type. Some columns represent multiple workloads: open*→ (open, stat, access); chmod*→ (chmod, chown); fsync*→ (fsync, sync).

5.2 Propagate
The first and most basic question we answer is: how costly is it

to utilize the shepherding infrastructure within CrookFS?To mea-
sure the basic overhead of I/O shepherding, we consider the sim-
plest reliability policy: a null policy that simply propagates errors
through the file system. Table 3 reports the number of lines ofcode
to implement each reliability policy; the basic propagate policy is
extremely simple, requiring only 8 statements.

The second line of Table 2 reports the performance of the propa-
gate policy, normalized with respect to unmodified Linux ext3. For
the propagate policy, the measured slowdowns are 5% or less for
all three workloads. Thus, we conclude that the basic infrastructure
and its threaded programming model do not add noticeable over-
head to the system.

5.3 Reboot vs. Retry
We next show the simplicity of building robust policies given

our I/O shepherding framework. We use CrookFS to implement
two straightforward policies: the first halts the file systemupon a
fault (with optional reboot); the second retries the failedoperation
a fixed number of times and then propagates the error code to the
application. The pseudo code for these two policies was presented
earlier (§3.3). As shown in Table 3 the actual number of lines of
code needed to implement these policies is very small: 15 foreach.

To demonstrate that CrookFS implements the desired reliability
policy, we inject type-aware faults on read operations. To stress
many paths within the file system, we utilize a synthetic workload
that exercises the POSIX file system API. The three graphs in Fig-
ure 7 show how the default ext3 file system, the Reboot, and Retry
policies respond to read faults for each workload and for each block
type. The leftmost graph (taken from [30]) shows that the default
ext3 file system does not have a consistent policy for dealingwith
read faults; for example, when reading an indirect block fails as
part of the file writing workload, the error is not even propagated to
the application.

The middle and rightmost graphs of Figure 7 show CrookFS is
able to correctly implement the Reboot and Retry policies; for ev-
ery workload and for every type of block, CrookFS either stops
the file system or retries the request and propagates the error, as
desired. Further, during fault-free operation, the CrookFS imple-

0

40

80

tx
/s

ec

Throughput

No Failure

0

40

80
tx

/s
ec

System Reboot

0

40

80

tx
/s

ec

FS Reboot

0

40

80

 0 100 200 300

tx
/s

ec

Time (sec)

Retry(~1 Sec)

Figure 8:Reboot vs. Retry (Throughput). The throughput of Post-
greSQL 8.2.4 running pgbench is depicted. The database is initialized with
1.5 GB of data, and the workload performs a series of simple SELECTs.
Four graphs are presented: the first with no fault injected (top), and the
next three with a transient fault. The bottom three graphs show the differ-
ent responses from three different policies: full system reboot, file system
reboot, and retry.

mentation of these two policies has negligible overhead; Table 2
shows that the performance of these two policies is equivalent to
the simple Propagate policy on the three standard workloads.

Figure 8 compares the availability implications of system reboot,
a file system microreboot (in which the file system is unmounted
and remounted), and retrying in the presence of a transient fault.
For these experiments, we measure the throughput of PostgreSQL
8.2.4 running a simple database benchmark (pgbench) over time;
we inject a single transient fault in which the storage system is
unavailable for one second. Not surprisingly, the full reboot can be
quite costly; the system takes nearly a minute to reboot, andthen
delivers lower throughput for roughly another minute as thecache
warms. The microreboot fairs better, but still suffers fromthe same
cold-cache effects. Finally, the simple retry is quite effective in the
face of transient faults.

8-nines

7-nines

6-nines

5-nines

4-nines

3-nines

2-nines

1-nine

15
m

30
m

1
h

3
h

6
h

12
h

1
d

2
d

1
w

2
w

1
m

3
m

6
m

1
y

A
va

ila
bi

lit
y

(L
og

 S
ca

le
)

 Mean time between transient failures

Availability and Failure Rate

Retry (~1 sec)
FS Reboot

Sys Reboot

Figure 9: Reboot vs. Retry (Availability). The graph shows
the computed availability (in terms of “nines”) plotted versus the mean
time between transient failures for the three policies: full system reboot, file
system reboot, and retry. The system is considered “available” when its
delivered performance is within 10% of average steady-state performance.

Given these measurements, one can calculate the impact of these
three reliability policies on system availability. Figure9 plots sys-
tem availability as a function of the frequency of transientfaults,
assuming that unavailability is due only to transient faults and that
the system is available when its delivered throughput is within 10%
of its average steady-state throughput. To calibrate the expected
frequency of transient faults, we note that although most disks en-
counter transient faults only a few times a year, a poorly-behaving
disk may exhibit a transient fault once per week [3]. Given a
weekly transient fault, the reboot strategy has availability of only
“three 9s”, while the retry strategy has “six 9s”.

In summary, it is well known that rebooting a system when a
fault occurs has a large negative impact on availability; however,
many commodity file systems deployed today still stop the system
instead of retrying an operation when they encounter a transient
error (e.g., ext3 and ReiserFS [30]). With CrookFS, one can easily
specify a consistent retry policy that adds negligible slowdown and
can improve availability markedly in certain environments.

5.4 Parity Protection
With the increasing prevalence of latent sector errors [4],file

systems should contain reliability policies that protect against data
loss. Such protection is usually available in high-end RAIDs [10],
but not in desktop PCs [30]. For our next reliability policy,we
demonstrate the ease with which one can add parity protection to a
single drive so that user data can survive latent sector errors.

The parity policy is slightly more complex than the retry andre-
boot policies, but is still quite reasonable to implement inCrookFS;
as shown in Table 3, our simple parity policy requires 28 lines of
code. As described in Section 4.1.4, calculating parity efficiently is
a non-idempotent operation, and thus the policy code must perform
old-value logging. We employ a static parity scheme, which adds
one parity block fork file system blocks (k is configured at boot
time). A static map is used to locate parity blocks.

To help configure the value ofk, we examine the trade-off be-
tween the probability of data loss and space overhead. Figure 10
shows both the probability of data loss (bottom) and the space over-
head (top) as a function of the size of the parity set. To calculate
the probability of data loss, we utilize recent work reporting the fre-
quency of latent sector errors [4], as described in the figurecaption.
The bottom graph shows that using too large of a parity set leads
to a high probability of data loss; for example, one parity block for
the entire disk (the rightmost point) has over a 20% chance ofdata
loss. However, the top graph shows that using too small of a parity
set leads to high space overheads; for example, one parity block per

 0
 10
 20
 30
 40
 50

S
pa

ce
 O

vh
. (

%
)

Space Overhead

1e-06
1e-04

0.01
1

100

8
KB

64 256 1
MB

4 16 64 256 1
GB

4 16 128

P
ro

b.
 (

%
)

 Size of a Parity Set ((k+1)*BlockSize)

Prob. of Data Loss

Figure 10:Overhead and Reliability with Parity. The bottom graph
shows the probabilty of data loss and the top graph the space overhead, as
the size of the parity set is increased from 2 4-KB blocks (equivalent to
mirroring) to one parity block for the entire disk. To compute probability
of data loss, we focused on the roughly 1 in 20 ATA disks that exhibited
latent sector errors; for those disks, the data in [4] reports that they exhibit
roughly 0.01 errors per GB per 18 months, or a block failure rate FB of
2.54 × 10−8 errors per block per year. Thus, if one has such a disk,
the odds of at least one failure occurring is1 − P (NoFailure) where
P (NoFailure) = (1 − FB)N on a disk of sizeN . For a 100 GB disk,
this implies a 63% chance of data loss. A similar analysis is applied to
arrive at the bottom graph above, but assuming one must have 2(or more)
failures within a parity set to achieve data loss. Note that our analysis
assumes that latent sector errors are independent.

 0

 0.4

 0.8

 1.2

 1.6

Read Write

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Random

Ext3
Parity

w/ Fault

 0

 20

 40

 60

Read Write
T

hr
ou

gh
pu

t (
M

B
/s

ec
)

Sequential

Figure 11:Parity Throughput. The figure plots the throughput of the
parity policy under some simple microbenchmarks. For sequential writes,
we simply write 24 MB to disk. For random reads and writes, we either
read or update random 4-KB blocks in a large (2 GB) file. For reads, both
the normal and failure cases are reported; failures are injected by causing
each initial read to fail which triggers reconstruction. Each experiment is
repeated 60 times; averages and standard deviations are reported.

file system block (the leftmost point) is equivalent to mirroring and
wastes half the disk. A reasonable trade-off is found with parity
sets between about 44 KB and 1 MB (k = 10 andk = 255); in this
range, the space overhead is reasonable (i.e., less than 10%) while
the probability of loss is small (i.e., less than 0.001%). In the rest
of our parity policies, we use parity sets ofk = 10 blocks.

Adding parity protection to a file system can have a large impact
on performance. Figure 11 shows the performance of the parity
policy for sequential and random access workloads that are either
read or write intensive. The first graph shows, given no faults, that
random reads perform well; however, random updates are quite
slow. This result is not surprising, since each random update re-
quires reading the old data and parity and writing the new data and
parity; on a single disk, there is no overlap of these I/Os andhence
the poor performance. The second graph shows that when thereare
no faults, the performance impact of parity blocks on sequential I/O
is minimal, whether performing reads or writes. The parity policy

 0
 5

 10
 15
 20
 25
 30

None Near Far

T
im

e
(m

s)

Replication Strategy

Writing

 0
 5

 10
 15
 20
 25
 30

None Near Far

T
im

e
(m

s)

Replication Strategy

Reading

Figure 12:Mirroring: Layout and Scheduling. The leftmost graph
shows the average cost of writing a small file (4 KB) synchronously to disk,
under three different replication strategies. The rightmost graph shows the
average cost of reading a random 4 KB block alternately from two files.
Different replication strategies are used; “None” indicates no replication,
“Near” that replicas are placed as close to the original as possible, and
“Far” that replicas are placed approximately 20 GB away).

code optimizes sequential write performance by buffering multiple
updates to a parity block and then flushing the parity block ina
chained transaction. Finally, given a latent sector error on each ini-
tial read, read performance is significantly slower becausethe data
must be reconstructed; however, this is (hopefully) a rare case.

In summary, CrookFS can be used to add parity protection to
file systems. Although parity protection can incur a high perfor-
mance cost for random update-intensive workloads (e.g., TPC-B
in Table 2), it still adds little overhead in many cases. We believe
that parity protection should be considered for desktop filesystems,
since it enables important data to be stored reliably even inthe pres-
ence of problematic disks.

5.5 Mirroring
For parity protection, we assumed that the parity location was

determined when the file system was created. However, improve
performance or reliability, more sophisticated policies may wish to
control the location of redundant information on disk. We explore
this issue in the context of a policy that mirrors user data blocks.
The code for this policy has been presented (§3.3); implementing it
requires 18 statements, as shown in Table 3.

We first examine the cost of mirroring during writes. The left-
most graph of Figure 12 presents the results of a simple experiment
that repeatedly writes a small 4 KB block to disk synchronously.
Three approaches are compared. The first approach does not mir-
ror the block (None); the second does so but places the copy asnear
to the original as possible (Near); the third places the copyas far
away as possible (Far). As one can see, placing the copy nearby
is nearly free, whereas placing the blocks far away exacts a high
performance cost (a seek and a rotation).

However, when reading back data from disk, spreading mirrors
across the disk surface can improve performance [19, 39]. The
rightmost graph of the figure shows an experiment in which a pro-
cess reads a random block alternately from each of two files placed
on opposite ends of the disk. Without replication (None), perfor-
mance is poor, incurring high seek costs. With the file replica near
its original (Near), there is also no benefit, as expected. Finally,
with replicas far away, read performance improves dramatically:
the scheduler is free to pick the copy to read from, reducing access
time by nearly a factor of two.

In summary, the best choice for mirror locations is highly nu-
anced and depends on the workload. As expected, when the work-
load contains a significant percentage of metadata operations, per-
formance suffers with mirroring, regardless of the mirror location
(e.g., the PostMark and TPC-B workloads shown in Table 2). How-

ever, in other cases, the location does matter. If spatiallylocalized
faults are likely, or read operations dominate (e.g., in a transactional
workload), the Far replication strategy is most appropriate; how-
ever, if data write performance is more critical (e.g., in an archival
scenario), the Near strategy may be the best choice. In any case,
CrookFS can be used to dynamically choose different block lay-
outs within a reliability policy.

5.6 Sanity Checks
Our next policy demonstrates that CrookFS allows differentre-

liability mechanisms to be applied to different block types. For
example, different sanity checks can be applied to different block
types; we have currently implemented sanity checking of inodes.

Sanity checking detects whether a data structure has been cor-
rupted by comparing each field of the data structure to its possible
values. For example, to sanity check an inode, the mode of an in-
ode is compared to all possible modes and pointers to data blocks
(i.e., block numbers) are forced to point within the valid range. The
drawback of sanity checks are that they cannot detect bit corruption
that does not lead to invalid values (e.g., a data block pointer that
is shifted by one is considered valid as long as it points within the
valid range).

Table 3 shows that sanity checks require only 10 statements of
policy code, since the I/O shepherd contains the corresponding
primitive. To evaluate the performance of inode sanity checking,
we constructed two inode-intensive workloads: the first reads one
million inodes sequentially while the seconds reads 5000 inodes in
a random order. Our measurements (not shown) reveal that san-
ity checking incurs no measurable overhead relative to the base-
line Propagate policy, since the sanity checks are performed at the
speed of the CPU and require no additional disk accesses. As ex-
pected, sanity checks also add no overhead to the three workloads
presented in Table 2.

In conclusion, given that sanity checking has no performance
penalty, we believe all file systems should sanity check datastruc-
tures; we note that sanity checking can be performed in addition
to other mechanisms for detecting corruption, such as checksum-
ming. Although file systems such as ext3 do contain some sanity
checks, it is currently done in anad hocmanner and is diffused
throughout the code base. Due to the centralized architecture of
I/O shepherding, CrookFS can guarantee that each block is prop-
erly sanity checked before being accessed.

5.7 Multiple Levels of Defense
We next demonstrate the use of multiple data protection mecha-

nisms within a single policy. Specifically, the multiple levels of de-
fense policy uses checksums and replication to protect against data
corruption. Further, for certain block types, the policy employs re-
pair routines when a structure does not pass a checksum matchbut
looks mostly “OK” (e.g., all fields in an inode are valid except time
fields). Finally, if all of these attempts fail to repair metadata in-
consistencies, the system unlocks the block, queues any pending
requests, runsfsck, and then remounts and begins running again.
As indicated in Table 3, the multiple levels of defense policy is one
of the more complex policies, requiring 39 lines of code.

Figure 13 shows the activity over time in a system employing
this policy for four different fault injection scenarios; in each case,
the workload consists of reading a single inode. The topmostpart
of the timeline shows what happens when there are no disk faults:
the inode and its checksum are read from disk and the checksums
match, as desired. In the next experiment, we inject a singledisk
fault, corrupting one inode; in this case, when the policy sees that
the checksums do not match, it reads the alternate inode which

Compare
Checksum Blk

Inode Blk

Compare
Relica Blk
Compare

Checksum Blk
Inode Blk

Repair
Compare

Relica Blk
Compare

Checksum Blk
Inode Blk

(2.5 secs) Fsck
Repair

Compare
Relica Blk
Compare

Checksum Blk
Inode Blk

 0 0.5 1 1.5 2 2.5 3 3.5 4

Time (ms)

Multiple Levels of Defense

Checksum matches

Checksum mismatch; fetch replica

Replica fails; semantic repair works

All fails; fsck is run

Figure 13:A Multi-Level Policy. The figure shows four different runs
of the multiple lines of defense policy. From top to bottom, each experiment
induces a new fault and the y-axis highlights which action the system takes.
These experiments use UML, which impacts absolute timing.

matches, as desired. In the third, we perform a small corruption
of both copies of the inode; here, the policy finds that neither in-
ode’s calculated checksum matches the stored checksum, butfinds
that the inode looks mostly intact and can be repaired simply(e.g.,
clears a non-zero dtime because the inode is in use). In our final
experiment, we corrupt both copies of the inode more drastically.
In this case, all of these steps fail to fix the problem, and thepol-
icy runs the fullfsck; when this action completes, the file system
remounts and continues serving requests (not shown).

The performance overhead of adding multiple levels of defense
for inode blocks is summarized in Table 2. Given no faults, the
basic overheads of this policy are to verify and update the inode
checksums and to update the inode replicas. Although updating on-
disk checksums and replicas is costly, performing multiplelevels of
defense has a smaller performance penalty than some other policies
since the checks are applied only to inode blocks.

5.8 D-GRAID
To demonstrate the full flexibility of CrookFS, we consider a

fine-grained reliability policy that enacts different policies for dif-
ferent on-disk data types. We explore this policy given multiple
disks. In this final policy, we implement D-GRAID style repli-
cation within the file system [32]. In D-GRAID, directories are
widely replicated across many disks and a copy of each file (i.e., its
inode, all data blocks, and any indirect blocks) is mirroredand iso-
lated within a disk boundary. This strategy ensures graceful degra-
dation in that the failure of a disk does not render all of the data on
the array unavailable.

With shepherding, the D-GRAID policy is straightforward toim-
plement. First, the policy code for important metadata (such as di-
rectories and the superblock) specifies a high degree of replication.
Second, the policy for inode, data, and indirect blocks specifies that
a mirror copy of each block should be dynamically allocated to a
particular disk. As indicated in Table 3, the D-GRAID policyre-
quires 79 statements; although this is more than any of the other
policies, it is significantly less than was required for the original
D-GRAID implementation [32].

Figure 14 presents the availability and performance of CrookFS
D-GRAID. The leftmost graph shows the availability benefit:with
a high degree of metadata replication, most files remain available
even when multiple disks fail. The rightmost graph shows per-
formance overhead; as the amount of metadata replication isin-
creased from one to four, the time for a synchronous write (and
thus metadata-intensive) benchmark increases by 25%.

100%
80%
60%
40%
20%

0%
 0 2 4 6 8 10

F
ile

s
A

va
ila

bl
e

(%
)

Disk Failures

Availability

10-way
5-way
1-way

 1
 1.1
 1.2
 1.3
 1.4
 1.5

4321

S
lo

w
do

w
n

Metadata Replication

Performance

Figure 14:D-GRAID Availability and Performance. The graphs
show the availability and performance of D-GRAID on a workload creating
1000 4-KB files. On the left, each line varies the number of metadata repli-
cas, while increasing the number of injected disk failures along the x-axis
up to the full size of an emulated 10-disk array. The y-axis plots the per-
centage of files available. On the right, performance on fourdisks is shown
as the number of metadata replicas increases; the y-axis shows slowdown
compared to a single copy.

In conclusion, CrookFS is particularly interesting given multi-
ple disks since it enables the file system to add reliability features
across the disks without a separate volume manager (much like
ZFS [33]). Due to the ability of CrookFS to enact different policies
for different block types, we are able to implement even relatively
complex reliability policies, such as D-GRAID.

6. RELATED WORK
The philosophy behind I/O Shepherding is similar to work on

aspect-oriented programming, stackable file systems, the conges-
tion manager and Click. We discuss each in turn.

Aspect-oriented programming [9, 23] addresses the generalis-
sue that code to implement certain high-level properties (e.g., “per-
formance”) isscatteredthroughout systems, much as we observed
that fault-handling is often diffused through a file system.Aspect-
oriented programming provides language-level assistancein im-
plementing these “crosscutting concerns,” by allowing therelevant
code to be described in a single place and then “weaved” into the
code with an aspect compiler. Thus, one could consider building
I/O Shepherding with aspects; however, the degree of integration
required with OS subsystems could make this quite challenging.

Stackable file systems provide a more flexible way of config-
uring file systems from a set of composable layers [18, 40]. An
I/O Shepherd could be viewed as a stackable layer that sits under-
neath the file system proper; however, we modified many system
components to build the shepherd, breaking the encapsulation that
stacking implies.

We drew inspiration from both the Congestion Manager (CM) [1,
5] and Click [27]. CM centralizes information about networkcon-
gestion within the OS, thus enabling multiple network flows to uti-
lize this knowledge and improve their behavior; in a similarman-
ner, the I/O Shepherd centralizes both information and control and
thus improves file system reliability. Click is a modular system for
assembling customized routers [27]. We liked the clarity ofClick
router configurations from basic elements, and as a result there are
parallels in our policies and primitives.

We also note that chained transactions are similar tocompen-
sating transactionsin the database literature [25]; both deal with
the case where committed transactions are treated as irreversible,
and yet there is a need to change them. In databases, this situation
commonly arises when an event external to the transactionalset-
ting occurs (e.g., a customer returns a purchase); in our case, we
use chained transactions in a much more limited manner, specifi-
cally to handle unexpected disk failures during checkpointing.

7. CONCLUSION
In this paper, we have described a flexible approach to reliability

in file systems. I/O Shepherding provides a way to tailor reliabil-
ity features to fit the needs of applications and the demands of the
environment. Through its basic design, shepherding makes sophis-
ticated policies simple to describe; through careful integration with
the rest of the system, shepherding implements policies efficiently
and correctly.

7.1 Porting the Shepherd
Our intention is to eventually specify a general shepherding layer

of which all file systems can take advantage. Similar to otherin-
terfaces internal to the OS [24], our goal is to enable multiple file
systems to leverage the same functionality.

Currently, we are porting shepherding to Linux ext2 and Reis-
erFS. The ext2 port has been straightforward, as it is simplya non-
journaling version of ext3. Thus, we removed all consistency man-
agement code and embrace the ext2 philosophy of writing blocks to
disk in any order. An additionalfsck-like pass before mounting
(not yet implemented) could rectify inconsistencies if so desired.

ReiserFS has been more challenging as it utilizes entirely dif-
ferent on-disk structures than the ext family. Thus far, we have
successfully built simple policies and are working on integration
with ReiserFS consistency management (we are using Reiser3data
journaling mode). Through this work, we are slowly gaining confi-
dence about the general applicability of the shepherding approach.

7.2 Lessons
Adding reliability through the I/O shepherd was simple in some

ways and challenging in others. In the process of building the en-
vironment, we have learned a number of lessons.

• Interposition simplifies fault management.One of the most
powerful aspects of I/O Shepherding is its basic design: the
shepherd interposes on all I/O and thus can implement a reli-
ability policy consistently and correctly. Expecting reliabil-
ity from code that is scattered throughout is unrealistic.

• Block-level interposition can make things difficult.The I/O
shepherd interposes on block reads and writes that the file
system issues. While natural for many policies (e.g., repli-
cating blocks of a particular type), block-level interposition
makes some kinds of policies more difficult to implement.
For example, implementing stronger sanity checks on direc-
tory contents (which span many blocks) is awkward at best.
Perhaps a higher-level storage system interface would pro-
vide a better interposition target.

• Shepherding need not be costly.The shepherd is responsible
for the execution of all I/O requests in the system. Careful in-
tegration with other subsystems is essential in achieving low
overheads, with particular attention paid to the concurrency
management infrastructure.

• Good policies stem from good information.Although not
the main focus of this paper, shaping an appropriate relia-
bility policy clearly requires accurate data on how the disks
the system is using actually fail as well as the nature of the
workloads that run on the system. Fortunately, more data is
becoming available on the true nature of disk faults [4, 31];
systems that deploy I/O shepherding may also need to in-
corporate a fault and workload monitoring infrastructure to
gather the requisite information.

• Fault propagation is important (and yet often buggy).An I/O
shepherd can mask a large number of faults, depending on
the exact policy specified; however, if a fault is returned, the
file system above the shepherd is responsible for passing the
error to the calling application. We have found many bugs
in error propagation, and are currently working on a more
general analysis of file systems to better understand (and fix)
their error propagation behavior.

• Fault handling in journaling file systems is challenging.By
its nature, write-ahead logging places intentions on disks; re-
active fault handling by its nature must behave reasonably
when these intentions cannot be met. Chained transactions
help to overcome this inherent difficulty, but at the cost of
complexity (certainly it is the most complex part of our code).
Alternate simpler approaches would be welcome.

This last lesson will no doubt inform our future work. We are
particularly interested in the question of whether future storage sys-
tems should employ journaling or shadow paging [15]; there are
many reliability trade-offs in these approaches that are not yet well
understood. Further work will be required to provide a deeper level
of insight on this problem.

Acknowledgments
We thank the anonymous reviewers and Frans Kaashoek (the I/O
shepherd’s shepherd) for their tremendous feedback, whichcaused
us to rethink and rework many aspects of both our presentation
and technical content. We would also like to thank Nitin Agrawal
for his earlier work and feedback on this project, and the CSLat
Wisconsin for their tireless assistance.

This material is based upon work supported by the National Sci-
ence Foundation under the following grants: CCF-0621487, CNS-
0509474, CCR-0133456, as well as by generous donations from
Network Appliance and Sun Microsystems.

Haryadi S. Gunawi was awarded an SOSP student travel scholar-
ship, supported by Infosys, to present this paper at the conference.
Swetha Krishnan was awarded an SOSP student travel scholarship,
supported by Hewlett-Packard.

Any opinions, findings, and conclusions or recommendationsex-
pressed in this material are those of the authors and do not neces-
sarily reflect the views of NSF or other institutions.

8. REFERENCES
[1] David G. Andersen, Deepak Bansal, Dorothy Curtis, Srini-

vasan Seshan, and Hari Balakrishnan. System Support for
Bandwidth Management and Content Adaptation in Internet
Applications. InOSDI ’00, pages 213–226, San Diego, CA,
October 2000.

[2] Dave Anderson, Jim Dykes, and Erik Riedel. More Than an
Interface: SCSI vs. ATA. InFAST ’03, San Francisco, CA,
April 2003.

[3] Lakshmi Bairavasundaram. On the frequency of transient
faults in modern disk drives. Personal Communication, 2007.

[4] Lakshmi Bairavasundaram, Garth Goodson, Shankar Pasupa-
thy, and Jiri Schindler. An Analysis of Latent Sector Errors
in Disk Drives. In SIGMETRICS ’07, pages 289–300, San
Diego, CA, June 2007.

[5] Hari Balakrishnan, Hariharan S. Rahul, and Srinivasan Se-
shan. An Integrated Congestion Management Architecture
for Internet Hosts. InSIGCOMM ’99, pages 175–187, Cam-
bridge, MA, August 1999.

[6] Wendy Bartlett and Lisa Spainhower. Commercial Fault Tol-
erance: A Tale of Two Systems.IEEE Transactions on De-
pendable and Secure Computing, 1(1):87–96, January 2004.

[7] Aaron B. Brown and David A. Patterson. Undo for Operators:
Building an Undoable E-mail Store. InUSENIX ’03, San An-
tonio, TX, June 2003.

[8] Andy Chou, Jun-Feng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. An Empirical Study of Operating System
Errors. InSOSP ’01, pages 73–88, Banff, Canada, October
2001.

[9] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg
Smolyn. Using AspectC to Improve the Modularity of
Path-Specific Customization in Operating System Code. In
ESEC/FSE-9, September 2001.

[10] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac,
Steven Kleiman, James Leong, and Sunitha Sankar. Row-
Diagonal Parity for Double Disk Failure Correction. InFAST
’04, pages 1–14, San Francisco, CA, April 2004.

[11] Timothy E. Denehy, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Bridging the Information Gap in
Storage Protocol Stacks. InUSENIX ’02, pages 177–190,
Monterey, CA, June 2002.

[12] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou,
and Benjamin Chelf. Bugs as Deviant Behavior: A General
Approach to Inferring Errors in Systems Code. InSOSP ’01,
pages 57–72, Banff, Canada, October 2001.

[13] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The Google File System. InSOSP ’03, pages 29–43, Bolton
Landing, NY, October 2003.

[14] Jim Gray. A Census of Tandem System Availability Between
1985 and 1990. Technical Report 90.1, Tandem Computers,
1990.

[15] Jim Gray and Andreas Reuter.Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann, 1993.

[16] Roedy Green. EIDE Controller Flaws Version 24.
http://mindprod.com/jgloss/eideflaw.html, February 2005.

[17] Robert Hagmann. Reimplementing the Cedar File System Us-
ing Logging and Group Commit. InSOSP ’87, Austin, TX,
November 1987.

[18] John S. Heidemann and Gerald J. Popek. File-system devel-
opment with stackable layers.ACM Transactions on Com-
puter Systems, 12(1):58–89, 1994.

[19] Hai Huang, Wanda Hung, and Kang G. Shin. FS2: dynamic
data replication in free disk space for improving disk perfor-
mance and energy consumption. InSOSP ’05, pages 263–276,
Brighton, UK, October 2005.

[20] Gordon F. Hughes and Joseph F. Murray. Reliability and Se-
curity of RAID Storage Systems and D2D Archives Using
SATA Disk Drives.ACM Transactions on Storage, 1(1):95–
107, February 2005.

[21] Hannu H. Kari, H. Saikkonen, and F. Lombardi. Detectionof
Defective Media in Disks. InThe IEEE International Work-
shop on Defect and Fault Tolerance in VLSI Systems, pages
49–55, Venice, Italy, October 1993.

[22] Jeffrey Katcher. PostMark: A New File System Benchmark.
Technical Report TR-3022, Network Appliance Inc., October
1997.

[23] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John
Irwin. Aspect-Oriented Programming. InProceedings of
the European Conference on Object-Oriented Programming
(ECOOP), pages 220–242, 1997.

[24] Steve R. Kleiman. Vnodes: An Architecture for MultipleFile
System Types in Sun UNIX. InUSENIX Summer ’86, pages
238–247, Atlanta, GA, June 1986.

[25] Henry F. Korth, Eliezer Levy, and Abraham Silberschatz.
A Formal Approach to Recovery by Compensating Transac-
tions. InVLDB 16, pages 95–106, Brisbane, Australia, August
1990.

[26] Larry Lancaster and Alan Rowe. Measuring Real World Data
Availability. In Proceedings of the LISA 2001 15th Systems
Administration Conference, pages 93–100, San Diego, Cali-
fornia, December 2001.

[27] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans
Kaashoek. The Click Modular Router. InSOSP ’99, pages
217–231, Kiawah Island Resort, SC, December 1999.

[28] Kiran Nagaraja, Fabio Olivera, Ricardo Bianchini, Richard P.
Martin, and Thu D. Nguyen. Understanding and Dealing with
Operator Mistakes in Internet Services. InOSDI ’04, San
Francisco, CA, December 2004.

[29] David Patterson, Garth Gibson, and Randy Katz. A Case for
Redundant Arrays of Inexpensive Disks (RAID). InSIGMOD
’88, pages 109–116, Chicago, IL, June 1988.

[30] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin
Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. IRON File Systems. InSOSP ’05,
pages 206–220, Brighton, UK, October 2005.

[31] Bianca Schroeder and Garth Gibson. Disk failures in thereal
world: What does an MTTF of 1,000,000 hours mean to you?
In FAST ’07, pages 1–16, San Jose, CA, February 2007.

[32] Muthian Sivathanu, Vijayan Prabhakaran, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Improving Storage
System Availability with D-GRAID. InFAST ’04, pages 15–
30, San Francisco, CA, April 2004.

[33] Sun Microsystems. ZFS: The last word in file systems.
www.sun.com/2004-0914/feature/, 2006.

[34] Rajesh Sundaram. The Private Lives of Disk Drives.
http://www.netapp.com/go/techontap/matl/sample/
0206totresiliency.html, February 2006.

[35] Michael M. Swift, Brian N. Bershad, and Henry M. Levy.
Improving the Reliability of Commodity Operating Systems.
In SOSP ’03, Bolton Landing, NY, October 2003.

[36] Nisha Talagala and David Patterson. An Analysis of Error Be-
haviour in a Large Storage System. InThe IEEE Workshop
on Fault Tolerance in Parallel and Distributed Systems, San
Juan, Puerto Rico, April 1999.

[37] Transaction Processing Council. TPC Benchmark B Standard
Specification, Revision 3.2. Technical Report, 1990.

[38] Stephen C. Tweedie. Journaling the Linux ext2fs File System.
In The Fourth Annual Linux Expo, Durham, North Carolina,
May 1998.

[39] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishna-
murthy, and T. E. Anderson. Trading Capacity for Perfor-
mance in a Disk Array. InOSDI ’00, San Diego, CA, October
2000.

[40] Erez Zadok and Jason Nieh. FiST: A Language for Stackable
File Systems. InUSENIX ’00, pages 55–70, San Diego, CA,
June 2000.

