Improving File System Reliability with I/0O Shepherding

Haryadi S. Gunawi*, Vijayan Prabhakarant, Swetha Krishnan*,
Andrea C. Arpaci-Dusseau*, Remzi H. Arpaci-Dusseau-

*Department of Computer Sciences
University of Wisconsin, Madison

fMicrosoft Research
Silicon Valley

{haryadi, swetha, dusseau, remziy@cs.wisc.edu, vijayanp@microsoft.com

ABSTRACT

We introduce a new reliability infrastructure for file sysie called
1/0 shepherdingl/O shepherding allows a file system developer to
craft nuancedeliability policiesto detect and recover from a wide
range of storage system failures. We incorporate shepigeimio
the Linux ext3 file system through a set of changes to the sensi
tency management subsystem, layout engine, disk schednieér
buffer cache. The resulting file system, CrookFS, enablesadb
class of policies to be easily and correctly specified. Welémp
ment numerous policies, incorporating data protectiohriggies
such as retry, parity, mirrors, checksums, sanity cheaks,data
structure repairs; even complex policies can be implendentkess
than 100 lines of code, confirming the power and simplicityhaf
shepherding framework. We also demonstrate that shepioeisli
properly integrated, adding less than 5% overhead to thpat®.

Categories and Subject Descriptors:
D.4.3 [Operating System$: File Systems Management
D.4.5 [Operating System$: Reliability
General Terms: Design, Experimentation, Reliability
Keywords: I/O shepherding, storage, fault tolerance, reliability

1. INTRODUCTION

We present the design, implementation, and evaluation efia n
reliability infrastructure for file systems callddO shepherding
1/0 shepherding provides a simple yet powerful way to budd r
bust reliability policies within a file system, and does sodoner-
ing to a single underlying design principleeliability should be
a first-class file system concer@urrent approaches bury reliabil-
ity features deep within the code, making both the intent ted
realization of the approach to reliability difficult to undeand or
evolve. In contrast, with 1/O shepherding, the reliabiltglicies
of a file system are well-defined, easy to understand, polyerid
simple to tailor to environment and workload.

The 1/0 shepherd achieves these ends by interposing on/&ch |
that the file system issues. The shepherd then takes rebjbityisi
for the “care and feeding” of the request, specifically byoexing a
reliability policy for the given block. Simple policies will do simple
things, such as issue the request to the storage systemtanuthe
resulting data and error code (success or failure) to theysdeem
above. However, the true power of shepherding lies in thie ric

Permission to make digital or hard copies of all or part o§ twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SOSP’070ctober 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/001($5.00.

set of policies that one can construct, including soprastid retry
mechanisms, strong sanity checking, the addition of chenkso
detect data corruption, and mirrors or parity protectiomeiover
from lost blocks or disks. I/O shepherding makes the craaifo
such policies simple, by providing a library of primitivesat can
be readily assembled into a fully-formed reliability pglic

I/0 shepherding focuses on reliability in the face of sterags-
tem faults, as they are the primary cause of failure in modtn
age systems [26]. Modern disks, due to their complex anitate
nature [2], have a wide range of “interesting” failure madies
cluding latent sector faults [21], block corruption [13] ltBansient
faults [36], and whole-disk failure [31]. Thus, many of thenp-
itives provided in the shepherd programming environmentere
around the detection of and recovery from storage systeltsfau

A major challenge in implementing I/O shepherding is proper
systems integration. We show how to take an existing jourgal
file system, Linux ext3, and transform it into a shephercimgre
file system, which we call CrookFS. Doing so requires chamnges
the file system consistency management routines, layouheng
disk scheduler, and buffer cache, as well as the additiohreat
support. Many of these alterations are necessary to pags inf
mation throughout the systema.{, informing the disk scheduler
where replicas are located so it can read the closer copyje soe
required to provide improved control to reliability poks €.g,
enabling a policy to control placement of on-disk replicas)

Of those changes, the most important interaction between th
shepherd and the rest of the file system is in the consisteacy m
agement subsystem. Most modern file systemswusie-ahead
logging to a journal to update on-disk structures in a consistent
manner [17]. Policies developed in the shepherd often adcbne
disk state €.g, checksums, or replicas) and thus must also update
these structures atomically. In most cases, doing so igstfar-
ward. However, we have found that journaling file systemsesuf
from a generaproblem of failed intentionswhich arises when the
intent as written to the journal cannot be realized due tk 8-
ure during checkpointing. Thus, the shepherd incorpoictaemed
transactions a novel and more powerful transactional model that
allows policies to handle unexpected faults during cherkpm
and still consistently update on-disk structures. The lseappro-
vides this supportransparentlyto all reliability policies, as the re-
quired actions are encapsulated in various systems prasiti

We demonstrate the benefits of 1/0 shepherding through exper
imentation divided into two parts. First, we show that I/Ggh
herding enables simple, powerful, and correctly-impletaérre-
liability policies by implementing an increasingly complset of
policies and demonstrating that they behave as desired dile
faults. For example, we show CrookFSlexibleby building poli-
cies that mimic the failure handling of different file systesuch as
ReiserFS and NTFS, with only a few lines of policy code. Wensho
that CrookFS igowerfulby implementing a broad range of poli-

cies, including single-disk parity protection to guard iagadata
loss due to latent sector errors. We demonstrate that C®ekF
ablesfine-grained policieso be developed; for example, we show
that CrookFS can implement D-GRAID style protection for aaet
data [32], thus ensuring that files remain available desjoitex-
pected disk loss. Throughout the development of thesebiktja
policies, we show how one must consider environmental am-wo
load characteristics to develop a well-reasoned policy.

Second, we show that 1/0 shepherding is effectively intiegia
into the rest of the system. Specifically, we show how shepher
ing adds little overhead across a set of typical workloads Gm
implement a broad range of policies efficiently. We also ldith
that chained transactions operate as desired, by forcengytstem
to crash at key points and observing that the final state afisk-
structures is consistent. Finally, we show how a reliapjbiblicy
can interact with the file system layout engine to controlicep
placement on disk, and subsequently that a shepherd-avuge d
scheduler can use knowledge of replicas to improve readperf
mance by fetching data from the closer copy. We thus conclude
that 1/O shepherding is a powerful framework for buildindgpust
and efficient reliability features within file systems.

The rest of this paper is as follows. We first present extended
motivation §2) and then discuss the design of I/0 shepherdiBy (
We next integrate the shepherd into CrookE&) @nd explore how
to craft reliability policies and evaluate their overhedgls). We
close by discussing related work6) and concluding§7).

2. EXTENDED MOTIVATION

We now motivate two underlying assumptions of our work. frirs
we argue that file systems should be built to handle faultsattise
from the storage system. Second, we posit that reliabibiticies
should be flexible, enabling the deployment of differentigpes
depending on the workload and environment.

2.1 The Need For Storage Fault Handling

Storage system failures arise for a large number of readons.
single-disk systems, despite a vast amount of internal mach
to safeguard their operation [2, 20], disks are failing inrareas-
ingly diverse manner. A recent study of millions of disksriduhat
latent sector faults are prevalent in the field [4], occugiiim 8.5%
of SATA drives studied. Silent block corruption is an issig,[16]
and transient faults also occur [36]. Thus, besides whislke-fdil-
ure, one should expect both temporary and permanent dihgpbé-
faults and corruptions [30]. For a desktop PC with a singlk di
this has strong implications: a system should likely be areg to
detect and recover from localized faults.

One way to increase reliability of the storage system is @ ad
more disks and a redundancy scheme [29]; although RAID tech-
niques can improve reliability, they do not solve all relip prob-
lems, for three primary reasons [30]. First, RAID does nat-pr
tect against faults that occur above the disk system, (vhile the
data is in transit). Second, many RAID solutions are geardg o
towards increasing reliability when entire disks fail; glim block
faults are not often considered. Finally, most storageyarda not
enable fine-grained policies, due to a lack of informatiaz][3

Of course, file system failure can arise for a variety of otieer
sons. For example, systems software [8, 12] and operatar [&r
14, 28] are well-known sources of unreliability. Howevescent
work demonstrates the largest source of faults in a well-btor-
age system is disk failure [26]; therefore, we focus on agldétia-
bility features to cope with disk faults. Other techniquesiprove
software resilienceg(g, Nooks [35]) are thus complimentary.

2.2 The Need For Flexible Policies

File systems have classically been deployed in diversangstt
For example, a file system that runs on a desktop machine with a
single SATA drive is often the same file system that runs atop a
hardware RAID consisting of high-end SCSI drives connetted
the system via a storage-area network.

Further, file systems typically run underneath a wide varagt
application workloads with differing needs. Again considee
desktop, where the workload might consist of personal pritu
ity applications such as email, word processing, and welwro
ing, versus a back-end server that runs a web server andrsuppo
ing database. In the former scenario, the user may wish @ hi
data reliability with modest storage overhead and readerady-
formance; in the latter, an administrator may desire thbdsgper-
formance possible combined with modest reliability. Deasphe
clear difference in workload requirements, however, thaeséle
system is usually deployed.

From the perspective of reliability, the task of buildingla fys-
tem would certainly be much easier if a single “best” apphoac
to reliability could be decided upon. Unfortunately, reicemrk
demonstrates that today’s commodity file systems takerdifteap-
proaches [30]. Linux ext3, for example, is highly sensitveead
faults, as it remounts the file system read-only if a singshdault
occurs. In contrast, many other file systems simply propeagstd
failures to the calling application. Another point in theesprum
is NTFS, which recognizes the sporadic nature of faultsyirey
many times before declaring an operation as failed.

Higher-end systems also employ varying approaches tdiklia
ity. For example, systems from Tandem, Network Appliancel a
others use checksums in some form to protect against canJpt
34]; however, only recently has Network Appliance addedqmo
tion against “lost writes”i(e., writes the disk claims to have written
but has not [34]). Innovation in data protection strateg@#inues.

Thus, we believe that the best file system reliability styatis a
function of the environmeng(g, how reliable the storage system is
and what types of faults are likely to occur) and the workl¢ad,
how much performance overhead can be tolerated). Whatdiedee
is a flexible environment for developing and deploying difig
reliability strategies, enabling developers or admiaistrs to tailor
the behavior of the file system to the demands of the site. ridesl
for flexibility drives the 1/0O shepherding approach.

3. 1/0 SHEPHERDING

We now describe the goals and design of a file system contain-
ing a general framework for providing reliability featureafter
presenting the goals of 1/O shepherding, we present thersyat-
chitecture and describe how developers specify religtpliticies.

3.1 Goals

The single underlying design principle of this work is that
liability should be a first-class file system conceiVe believe a
reliability framework should adhere to the following thrgeals:
simple specification, powerful policies, and low overhead.

3.1.1 Simple specification

We believe that developers should be able to specify rédiliabi
policies simply and succinctly. Writing code for reliabjlis usu-
ally complex, given that one must explicitly deal with botlstre-
having hardware and rare events; it is especially diffiaquktnisure
that recovery actions remain consistent in the presencgstés
crashes. We envision that file system developers will takéhen
role of faultpolicy writers the I/O shepherd should ease their task.

To simplify the job of a policy writer, the 1/0 shepherd prdes
a diverse set of detection and recovery primitives that hideh of
the complexity. For example, the I/O shepherd takes caretf b
the asynchrony of initiating and waiting for I/O and keepdtiple
updates and new metadata consistent in the presence o&srash
Policy writers are thus able to stitch together the desiedidlility
policy with relatively few lines of code; each of the compfaxdi-
cies we craft§5) requires fewer than 80 lines of code to implement.
The end result: less code and (presumably) fewer bugs.

3.1.2 Powerful policies

We believe the reliability framework should enable not octy-
rect policies, but more powerful policies than currentlyiséxn
commodity file systems today. Specifically, the framewor&usth
enable composable, flexible, and fine-grained policies.

A composableolicy allows the file system to use different se-
guences of recovery mechanisms. For example, if a disk egksd f
the file system can first retry the read; if the retries comtitaufail,
the file system can try to read from a replica. With shepherdin
policy writers can compose basic detection and recovenjifivies
in the manner they see fit.

A flexible policy allows the file system to perform the detec-
tion and recovery mechanisms that are most appropriatehtor t
expected workload and underlying storage system. For eleamp
one may want different levels of redundancy for temporassfih
one volume and home directories in another. Further, if tiden
lying disk is known to suffer from transient faults, one magnw
extra retries in response. With I/O shepherding, admatists can
configure these policy variations for each mounted volume.

A fine-grainedpolicy is one that takes different recovery actions
depending on the block that has failed. Different disk biobkve
different levels of importance to the file system; thus, salisk
faults are more costly than others and more care should les tak
to prevent their loss. For example, the loss of disk blocks- co
taining directory contents is catastrophic [32]; therefa policy
writer can specify that all directory blocks be replicat®dth 1/0
shepherding, policies are specified as a function of blopk.ty

3.1.3 Low overhead

Users are unlikely to pay a large performance cost for imgalov
reliability. We have found that it is critical to properlytagrate
reliability mechanisms with the consistency managemetyiput,
caching, and disk scheduling subsystems. Of course, ilélab

) File System Cache

Journaling

(2]

L /O Shepherd

o

2 [| Policy Meta

© Table data
super — N Maps
inode — % ¢e°° ¥ Policy and
pro— Primitives other
data — 9 eee state

(Generic I/O [Scheduling, Device 1/0])

Figure 1:System Architecture. The architecture of a file system con-
taining an I/O shepherd is shown. The file system properydiat jour-
naling) and caching subsystems sit above the 1/0 shephatddve been
modified in key locations to interact with the shepherd a®ssary. The
shepherd itself consists of a policy table, which pointsdlicg code that
dictates the detection and recovery strategy for that patér block type.
Beneath the shepherd is the generic I/O layer (includinds disheduling,
which is slightly modified as well) and one (or more) disks.

3.2.1 Policy Table and Code

With 1/0 shepherding, the reliability policy of the file sgst is
specified by golicy table this structure specifies which code to
execute when the file system reads or writes each type ofgkn-di
data structured.g, superblock, inode, or directory). Each entry
in the table points tgolicy code which defines the sequence of
actions taken for a block of a particular type. For exampiegrgy
an ext3-based file system, a policy writer can specify a wiffe
policy for each of its 13 block types; the table could thus dea
triple replication of the superblock, checksum and panittgction
for other metadata, and an aggressive retry scheme for ater d

Although this design does not directly support differeniqges
for individual files, the I/O shepherd allows a differentipgltable
per mounted file system. Thus, administrators can tailoptiiey
of each volume, a basic entity they are accustomed to magagin
For example, &t np volume could employ little protection to ob-
tain high performance while an archive could add checksumds a

mechanisms do not always add overhead; for example, a smartparity to improve reliability at some performance cost.

scheduler can utilize replicas to improve read perform@b@e39].

3.2 Architecture

To manage the storage system in a reliable way, the /O shétphe
must be able to interpose on every I/O request and respoate, n
rally leading to an architecture in which the shepherd istjpoed
between the file system and disks (Figure 1). As shown thdf@n
requests issued from different components of a file syseeg) the
file system, journaling layer, and cache) are all passeded/@
shepherd. The shepherd unifies all reliability code in alsitaga-
tion, making it easier to manage faults in a correct and stesi
manner. The shepherd may modify the I/O reques,(by remap-
ping it to a different disk block) or perform additional rezsts €.g,
by reading a checksum block) before sending the requestko di
When a request completes, the response is again routedthtioel
shepherd, which performs the desired fault detection acovezy
actions, again potentially performing more disk operatioAfter
the shepherd has executed the reliability policy, it resuire re-
sponse (success or failure) to the file system.

3.2.2 Policy Metadata

To implement useful policies, an I/0O shepherd often reguae
ditional on-disk state to track the location of various ®dt is
using €.g, the location of checksums, replicas, or parity blocks).
Thus, to aid in the management of persistent metadata, @e I/
shepherd framework providesaps Some commonly used maps
are aCMap to track checksum blocks, @&Map to record bad block
remappings, and aVap to track multiple replicas.

A policy can choose to use eitheristatic or dynamicmap for a
particular type of metadata. With static mapping, the dasion
between a given on-disk block and its checksum or replicatioc
is fixed when the file system is created. With a dynamic map, new
associations between blocks can be created over time.

There are obvious trade-offs to consider when deciding &etw
static and dynamic maps. Static maps are simple to maintain b
inflexible; for example, if a static map is used to track a klaod
its copy, and one copy becomes faulty due to a latent seator, er
the map cannot be updated with a new location of the copy.

Dynamic maps are more flexible, as they can be updated as theby first retrying the failed read or write operation a fixed rgmof

file system is running and thus can react to faults as theyroccu
However, dynamic maps must be reflected to disk for religbili
Thus, updating dynamic maps consistently and efficientéyrisa-

jor challenge; we describe the problem and our approachvmgo

it in more detail below {4.1).

3.2.3 Policy Primitives

To ease the construction of policy code, the shepherd peewad

set ofpolicy primitives The primitives hide the complexity inher-
ent to reliable I/O code; specifically, the primitives eresthrat pol-
icy code updates on-disk structures in a single transacGtearly,
a fundamental tension exists here: as more functionalignéap-
sulated in each primitive, the simpler the policy code beesnbut
the less control one has over the reliability policy. Ourichdas
generally been to expose more control to the policy writers.

The 1/0 shepherd provides five classes of reliability privas.
All primitives return failure when the storage system iftseturns
an error code or when blocks do not have the expected contents
Read and Write: The I/O shepherd contains basic primitives for
reading and writing either a single block or a group of blocés-
currently from disk. A specialized primitive reads from roired
copies on disk: given a list of blocks, it reads only the blticat
the disk scheduler predicts has the shortest access time.
Integrity: On blocks that reside in memory, primitives are pro-
vided to compute and compare checksums, compare multigd&s|
and perform strong sanity checlesd, checking the validity of di-
rectory blocks or inodes).

Higher-level Recovery: The 1/O shepherd contains primitives to
stop the file system with a panic, remount the file system cedyl-

or even reboot the system. Primitives are also providedérddrm
semantic repair depending upon the type of the bled,(@n inode

or a directory block) or that run a fullsck across the disk.
Persistent Maps: The 1/O shepherd provides primitives for look-
ing up blocks in an indirection map and for allocating (o liezzat-
ing and freeing) new entries in such a map (if it is dynamic).
Layout: To allow policy code to manage blocks for its own use
(e.g, for checksums, remapped blocks, and replicas), the I/@-she
herd can allocate blocks from the file system. One primitixe e
poses information about the current layout in the file sysigrite

a second primitive allocates new blocks, with hooks to Spexef-
erences for block placement. With control over block plaeem
policy code can provide trade-offs between performancereliat
bility (e.g, by placing a replica near or far from its copy).

3.3 Example Policy Code

The I/0O shepherd enables one to specify reliability pofidteat
are traditionally implemented across different levels loé stor-
age stack. For example, one can specify policies that aperat
a single block and are often performed within dis&gy(retrying,
remapping, and checksums), policies that operate acrokgplau
blocks or multiple disks€.g, mirrors and parity), and finally, one
can specify policies requiring semantic information atibetfailed
block and are usually performed by the file systeny{(stopping
the file system, data structure repair, and fsck). A shepbieatiles
policies that compose all of these strategies.

We now show the simplicity and power of the shepherd through a
number of examples. The names of all policy primitives begih
| GS for clarity. We simplify the pseudo-code by ignoring some of
the error codes that are returned by the policy primitiveshsas
| OS_MapLookup andl GS_MapAl | ocat e (with irony noted).

The first example policy is based loosely on NTFS [30]. The
NTFS policy tries to keep the system running when a faultearis

times; if it is unable to complete the operation, the faukiraply
propagated to the application. We show the read versioreafdde
here (the write is similar).

NTFSRead(Di skAddr D, MenmAddr A)

for (int i =0; i < RETRY_MAX; i++)
if (I0S_Read(D, A == K)
return OK;
return FAIL;

The second example policy loosely emulates the behavior of
ReiserFS [30]. This policy chooses reliability over availidy;
whenever a write fault occurs, the policy simply halts the §ys-
tem. By avoiding updates after a fault, this conservatieragach
minimizes the chance of further damage.

Rei ser FSWi t e(D skAddr D, MemAddr A)

if (105 Wite(D, A == OK)
return O

el se
| OS_Stop(l OS_HALT);

The next two examples show the ease with which one can spec-
ify policies that detect block corruptiorSani t yRead performs
type-specific sanity checking on the read block using a streph
primitive; note in this example how the block type can be pdges
and used by policy cod&€hecksunmRead uses checksums to de-
tect block corruption; the policy code first finds the locataf the
checksum block, then concurrently reads both the storecksbhen
and the data block (the checksum may be cached), and then com-
pares the stored and newly computed checksums.

Sani t yRead(Di skAddr D, MemAddr A, Bl ockT T)

if (108 _Read(D, A) FAI L)
return FAIL;
return |1 0S_Sani tyCheck(A, T);
ChecksunRead(Di skAddr D, MenmAddr A)
Di skAddr cAddr;
Byt eCf f set of f;
CheckSum onDi sk;
| OS_MapLookupOf f set (ChMap, D, &cAddr, &off);
/1 read from checksum and D concurrently
if (1 0S_Read(cAddr, &onDisk, D, A)==FAlL)
return FAIL;
CheckSum cal ¢ = | OS_Checksun(A);
return | OS_Conpare(onDi sk, off,

cal c);

The next two examples compare how static and dynamic maps
can be used for tracking replicasStati cM rrorWite as-
sumes that the mirror mapMap, was configured for each block
when the file system was createldynM rror Wi t e checks to
see if a copy already exists for the block being written tathid
copy does not exist, the code picks a location for the mimak al-
locates (and persistently stores) an entriyiap for this mapping.

StaticMrrorWite(D skAddr D, MenmAddr A)
Di skAddr copyAddr;
| OS_MapLookup(Mvap, D, ©Addr);
/1 write to both copies concurrently
return (10S_Wite(D, A copyAddr, A));
DynMrrorWite(D skAddr D, MemAddr A)
Di skAddr copyAddr;
/] copyAddr is set to mirrored bl ock
/1 or NULL if no copy of D exists
| OS_MapLookup(Mvap, D, ©Addr);
i f (copyAddr NULL)
Pi ckM rrorLoc(Mvap, D, ©Addr);
| OS_MapAl | ocat e(Mvap, D, copyAddr);
return (10S_ Wite(D, A copyAddr, A));

The final two policy examples show how blocks can be remapped,;
the map of remapped blocks is most naturally a dynamic map,

since the shepherd does not knewpriori which writes will fail.
RemapW i t e is responsible for the remapping; if a write opera-
tion fails, the policy code picks a new location for that pal-
locates a new mapping for that block Rivap, and tries the write
again. RemapRead checksRMVap to see if this block has been
previously remapped; the read to the disk is then redireci¢de
possibly new location. Of course, all of these policies carek-
tended, for example, by retrying if the disk accesses fatapping
the file system on failure.
RemapW it e(Di skAddr D, MemAddr A)

Di skAddr remap;

/'l remap is set to remapped bl ock

/1 or to Dif not remapped

| OS_MapLookup(RVap, D, &remap);

if (IS Wite(remap, A FAI L)

Pi ckRemapLoc(Rvap, D, &remap);
| OS_MapAl | ocat e(Rvap, D, renmp);
return 10S_Wite(remap, A);
RemapRead(Di skAddr D, MemAddr A)

Di skAddr remap;

| OS_MapLookup(RVap, D, &remap);

return | OS_Read(renmap, A);

4. BUILDING CROOKFS

We now describe how to integrate 1/0 shepherding into art-exis
ing file system, Linux ext3. For our prototype system, weédyai
that it is important to work with an existing file system in erdo
leverage the optimizations of modern systems and to inertes
likelihood of deployment. We refer to the ext3 variant wil®|
shepherding as CrookFS, named for the hooked staff of a sheéph

Integrating shepherding with ext3 instead of designing & sy
tem from scratch does introduce challenges in that the gndph
must explicitly interact with numerous components of the $is-
tem, including the journal, buffer cache, layout algorittamd disk
scheduler. We devote most of our discussion to how we integra
CrookFS with ext3 journaling to ensure consistency, and thee
scribe integration with other key subsystems.

4.1 Consistency Management

In order to implement some reliability policies, an 1/0 shem
requires additional datee(g, checksum and replica blocks) and
metadatad.g, persistent maps). Keeping this additional informa-
tion consistent can be challenging. As an example, conpialéry
code that dynamically creates a replica of a block; doinggaires
picking available space on disk for the replica, updatiregrttirror
map to record the location of the replica, and writing theyioil
and replica blocks to disk. One would like these actions tpdre
formed atomically despite the presence of crashes.

Given that ext3 employs journaling for file system metadath a
user data, a natural question is whether the ext3 journahisarbe
used for consistently updating CrookFS data and metadatereT
fore, we briefly review how journaling is performed in ext3.

4.1.1 Journaling Basics

Ext3 and most other current commodity file systems (inclgdin
Reiser3, IBM JFS, and NTFS) use journaling [17]. To describe
the basics of journaling, we borrow the terminology of exa8][
Journaling exists in three different modes (data, ordexed write-
back), each of which provides different levels of consisjenin
data journaling, all traffic to disk is first committed to a IGce.,
the journal) and then checkpointed to its final on-disk lmratThe
other journaling modes journal only metadata, enablingistent
update for file systems structures but not for user data. iGivat
the goal of I/O shepherding is to enable highly robust filaeys,
we build upon the most robust form of journaling, data jolinta

Write Commit Checkpoint Release
Mem BID BID
Log tbB | Dtc]|| tb B | D tc || IBBNINDE
) [B |
Fixed o] D
To T1 T2 Ts

Figure 2:Journaling Data Flow. The figure shows the series of actions
that take place in data journaling mode. Both in-memory)i@pd on-disk
(bottom) states are showb. is a data block) an inode B a bitmap,tb the
beginning of a transaction, antd the commit block. Darker gray shading
indicates that blocks have been released after checkpginti

The sequence of operations when an application appends a dat
block D to a file is shown in Figure 2. At tim&j, the data block
D and bitmaB are updated in memory and a pointetds added
to the inodel; all three blocks D, I, B) now sit in memory and
are dirty. At timeTy, the three block®, |, andB are wrapped
into atransactionand the journaling layecommitsthe transaction
(which includes markers for the stadht and endtc of the transac-
tion) to the journal; the blocks are now marked clean but &lle s
pinned in memory. After the commit step is completeTat the
blocks arecheckpointedo their final fixed locations. Finally, at
T3, the transaction iseleasedand all three blocks are unpinned
and can be flushed from memory and the log space reused. Note
that multiple transactions may be in the checkpointing stegur-
rently (.e., committed but not yet released). If the system crashes,
the file system will recover by replaying transactions injthenal
that are committed but not yet released.

4.1.2 Strawman Shepherds

To understand how CrookFS uses the ext3 journal to maintain
consistency, we begin with two strawman approaches. Naitbe;
rather, we use them to illustrate some of the subtletieseoptbb-
lem. In theearly strawmarapproach, the shepherd interposes on
the preceding journal writes to insert its own metadata fis t
transaction. This requires splitting policy code for a gilg#ock
type into two portions: one for the operations to be perfaioe
the journal write for that block and one for operations on ecsh
point. In thelate strawman the shepherd appends a later trans-
action to the journal containing the needed informationis &p-
proach assumes that the policy code for a given block is istok
only at checkpoint time. We now describe how both strawmén fa

First, consider th®ynM r r or Wi t e policy (presented if3.3).
On the first write to a blocb, the policy code picks, allocates, and
writes to a mirror blockC (denoteccopy Addr in the policy code);
at this time, the data bitmaB’ and the mirror magM are also
updated to account faC. All of these actions must be performed
atomically relative to the writing ob on disk.

The early strawman can handle tBgnM rror Wi t e policy,
as shown in Figure 3. When the early strawman sees the entry
for D written to the journal T3), it invokes policy code to allocate
an entry forC in M andB’ and to insertM andB’ in the current
transaction. Wheb is later checkpointedI(;), similar policy code
is again invoked so that the cofy is updated according to the
mirror mapM . With the early strawman, untimely crashes do not
cause problems because all metadata is in the same tramsacti

Now, consider th&®ermapW i t e policy (presented i§3.3). This
policy responds to the checkpoint failure of a bldzky remapping
D to a new locationR (denoted enap in the policy code). How-
ever, the early strawman cannot implement this policy. Aswh
in Figure 4, after the write to a data blo€kfails (7%) the policy
wants to remap blocb to R (73), which implies that the bitmap
andRMap are modified B’ andM). However, it is too late to mod-

Write Commit Checkpoint Release
Mem B'ID B'ID
L tbB 1 DM]|{tbB I DM F
09 B'tc
! [B] [} B |
Fixed o] M CD
To T T2 Ts

Figure 3: Early Strawman for DynM rror Wi te. The figure
shows how the early strawman writes to a replica of a datalbc

Write Commit CP Fail Remap Release Crash
Mem BID BID B]1 oM B=—M
Log thB | Dic]||thB | Dtc || thB | Dtc || IBIBNNDIE
Fixed)JII B |
To T1 T2 Ts T4 Ts

Figure 4:Early Strawman for RemapW i t e. The figure illustrates
how the early strawman cannot deal with the problem of faifeeintions.

ify the transaction that has been committed. Thus, if a coashrs
(Ts) after the transaction is releaséfd), all metadata changes will
be discarded and the disk will be in an inconsistent stateciip
cally, the data bloclo is lost since the modifieBMap that has the
reference tR has been discarded.

More generally, the early strawman cannot handle any check-
point failures that result in metadata changes, becausast oal-
culatea priori to the actual checkpoint what will happen at check-
point time. We refer to this as the problem failed intentions
Failed intentions occur when a commit to the journal sucséded
the corresponding checkpoint does not; the intent of theitgpths
logged in the journal) cannot be realized due to checkpaihire.

We now examine the late strawman which only invokes policy
code at checkpoint time. Given that it is “too late” to modify
a transaction at checkpoint time, the late strawman addthano
transaction with the new metadata. Unfortunately, the $ataw-
man cannot correctly handle tigynM rror Wi t e policy, as
shown in Figure 5. During the checkpoint of blobkT%), the late
strawman invokes the policy code, creates and updates gyeCo
as desired. After this transaction has been releaggd & new
transaction containing’ andM is added to the journall,). The
problem with the late strawman is that it cannot handle aesyst
crash that occurs between the two transactions T, which can
occur betwees andTy,): D will not be properly mirrored with
a reachable copy. When the file system recovers from thiicras
it will not replay the transaction writin® (andC) because it has
already been released and it will not replay the transactomain-

Write Commit CP-Mirror Release New Tx Crash
Mem BID BJ1 oM B M =0 e VI
[bB I Dtc]|| tbB I Dtc || IBBIFDIE
Log
) 1| B | B |
Fixed cD cD co

-I B
[CID]
T2 T3 =—> T4

T |

To Ti

Figure 5: Late Strawman for DynM rrorWite. The figure
shows the incorrect timing of the new transaction commit.
Write Commit CP Fail Remap Mirror Chained Tx Release
Mem [BTD] B ID BIDM B IDMMB] BIDMB BIDMB
tbB | Dtc]|{tbB | Dtc|[tbB | Dtc|{tbB | D tc
Log th MB' tc
i M| B LB I B I
Fixed e} wo@|| xpc| xoc
To T1 T2 Ts Ta Ts

Figure 6:Chained Transactions forRemapM rror Wi t e. The
figure shows how chained transactions handle failed inbesti

mirror map should already exist) and it is the write to theyc@p
that fails. Code pathsot taken aregray and slanted

RemapM rrorWite(Di skAddr D, MemAddr A)
Di skAddr copy, renap;
Status statusl = OK, status2 = OK;
| OS_MapLookup(Mvap, D, ©);
/'l remap is set to Dif not remapped
| OS_MapLookup(RVap, D, &renmap);
if (copy NULL)
Pi ckM rrorLoc(Mvap, D, ©);
| OS_MapAl | ocat e(Mvap, D, copy);

if (IS Wite(remap, A copy, A == FAIL)

if (10s_Failed(remap))
Pi ckRemapLoc(Rvap, D, &renmp);
| OS_MapAl | ocat e(Rvap, D, renmp);
statusl = |OS_Wite(remap, A);

if (10S_Failed(copy))
Pi ckM rrorLoc(Mvap, D, ©);
| OS_MapAl | ocate(Mvap, D, copy);
status2 = |OS_Wite(copy, A;

return ((statusl==FAIL)|| (status2==FAlL));

Figure 6 presents a timeline of the activity in the systemhwit
chained transactions. With chained transactions, conmgithe
original transaction is unchanged as seen at titfieand 74 (pol-
icy code will be invoked when each of the blocks in the journal
is written, but its purpose is to implement the reliabilitglipy of
the journal itself). When the data blodk is checkpointed, the
RemapM rror Wi t e policy code is invoked foD. The policy
code finds the copy location & (denotedcopy) and the po-

ing B’ andM because it has not been committed; as a result, copy tentially remapped location d® (denotedr enap). In our exam-

C will be unreachable. Thus, the timing of the new transacigon
critical and must be carefully managed, as we will see below.

4.1.3 Chained Transactions

We solve the problem of failed intentions with the developtne
of chained transactionsWith this approach, like the late strawman,
all metadata changes initiated by policy code are made aikehe
point time and are placed in a new transaction; howeverkenli
the late strawman, this new chained transaction is comantitt¢éhe
journalbeforethe old transaction is released. As a result, a chained
transaction makes all metadata changes associated withéiok-
point appear to have occurred at the same time.

To illustrate chained transactions we consider a relighol-
icy that combines mirroring and remapping. We consider #sec
where this is not the first write to the blo€k (i.e., an entry in the

ple, we assume that writing to the co@yfails (7%); in this case,
the policy code allocates a new location for(hence dirtying the
bitmap, B’), writes the copy to a new location, and updates the
mirror mapM’ (73). Our integration of the shepherd primitive,
| OS_MapAl | ocat e, with the ext3 journaling layer ensures that
the chained transaction containiBy andM’ is committed to the
journal (Ty) before releasing the original transactidni). At time

Ts (not shown), when the chained transaction is checkpoiried,
blocksB’ andM’ are finally written to their fixed locations on disk;
given that these are normal checkpoint writes, the relepality
code will be applied to these updates.

With a chained transaction, a crash cannot occur “betwden” t
two related transactions, because the second transastaways
committed before the first is released. If the system cralsb&se
the first transaction is released, all operations will béaygd.

Chained transactions ensure that shepherd data and naetadat
kept consistent in the presence of crashes. However, if oneti
careful, chained transactions introduce the possibifityeadlock.
Specifically, because CrookFS now holds the previous clogekp
while waiting to commit the chained transaction, we mustiGvo
the two cases that can lead to circular dependencies. EnmdkFS
must ensure that sufficient space exists in the journal fohained
transactions; this constrains the number of remappingsahse-
quent chained transactions) that can occur in any policg c6éc-
ond, CrookFS must use shadow copies when updating a shepher
metadata block that exists in a previous transaction (it does
for its own metadata), instead of acquiring locks.

To test the chained transaction infrastructure in the pesef
system crashes, we have constructed a testing framewdrkntha
serts crashes at interesting points in the journaling sespeWe
have injected 16 crash points during journaling updates8asrdsh
points during recovery. We have verified that in all casesébev-
ery process brings the file system to the expected on-digk sta

4.1.4 Non-ldempotent Policies

To maintain consistency, all failure scenarios must be idens
ered, including repeated crashes during recovery. Repheedshes
will cause CrookFS to replay the same transactions and ¢beir
responding checkpoints. In such scenario, adgmpotenpolicy
code will work correctly.

For example, consider a policy that protects data blocKs pat-
ity. Although parity can be computed using an idempotenaéqn
(P = D1 D2¢& ... & Dn), this approach performs poorly be-
causeN — 1 blocks must be read every time a block is modified.
However, the more efficient way of computing parit#,.¢.. =
Poia @ Dora @ Drew) is Nnon-idempotent sinc,;; and D4 Will
be overwritten withP,,.., and D,.,, respectively. Thus, repeated
journal replays will incorrectly calculate the parity bkoc

To handle non-idempotent policies such as parity, CrookieS p
vides an old-value logging mechanism [15]. The old-valug lo
annotates versions to distinguish old and new values, aitdsnvr
the old data and its corresponding version into the log ataltyi
Thus, non-idempotent policy code must take care to readlthe o
values and log them into the old-value log, using supporhiwit
CrookFS. Simplified policy code fd?ar i t yW i t e is as follows.

ParityWite(Di skAddr D, MemAddr aNew)

Di skAddr P;
MemAddr ad d, apd d, apNew,
| OS_MapLookup(PMap, D, &P);

if (1 0S_ReadStabl e(D,add, P,apdd) == FAIL)
return FAIL;

if (105 WiteAndLog(D, ad d, P, apd d) == FAIL)
return FAIL;

apNew = ConputeParity(apd d, ad d, aNew);

return (10S_Wite(D, aNew, P, apNew));

4.1.5 Reliability of the Journal and Shepherd Maps

A final complication arises when the reliability policy wish
to increase the protection of the journal or of shepherd datta
itself. Although there are a large number of reasonablecigdli
that do not add protection features to the journal (since drily
read in the event of an untimely crash), some policies migsi vo
add featuresd.g, replication or checksumming). The approaches
we describe above do not work for the journal, since they bee t
journal itself to update other structures properly. Thus, treat
journal replication, checksumming, and other similar@tias a
special case, mandating a restricted set of possible psli@imilar
care must be taken when applying policy to shepherd metadata
as is found in the various map structuresgy(the mirror map).

4.2 System Integration

To build effective reliability policies, the shepherd muster-
act with other components of the existing file system. Below,
discuss these remaining technical hurdles.

4.2.1 Semantic Information

To implement fine-grained policies, the shepherding layestm
have information about the current disk request; in our enn-
tation, shepherding must know the the type of each blecg, (

dvhether it is an inode or a directory) and whether the reqisest

a read or a write in order to call the correct policy code asifipe
in the policy table.

In the case where requests are issued directly from the file sy
tem, acquiring this information is straightforward: theefilystem
is modified to pass the relevant information with each 1/Q.cal
When 1/O calls are issued from common file system layerg, (
the generic buffer cache manager), extra care must be té&lest,
the buffer cache must track block type for its file blocks aad9
this information to the shepherd when calling into it. Setdhe
buffer cache must only pass this information to shepheraratile
systems. A similar extension was made to the generic jomgal
and recovery layers to track the type of each journaled block

4.2.2 Threads

I/0 shepherding utilizes threads to handle each 1/0 recaredbt
any related fault management activity. A thread pool is te@a
at mount time, and each thread serves as an execution céotext
policy code. Thus, instead of the calling context issuing@uest
directly and waiting for it to complete, it enqueues the esjland
lets a thread from the pool handle the request. This threauwl th
executes the corresponding policy code, returning succdasure
as dictated by the policy. When the policy code is compléte, t
caller is woken and passed this return code.

We have found that a threaded approach greatly simplifies the
task of writing policy code, where correctness is of paramtam-
portance; without threads, policy code was split into aesedf
event-based handlers that executed before and after éxobfién
executing in interrupt context and thus quite difficult togram. A
primary concern of our threaded approach is overhead, wiiech
explore in Section 5.2.

4.2.3 Legacy Fault Management

Because the shepherd now manages file system reliability, we
removed the existing reliability code from ext3. Thus, thpper
layers of CrookFS simply propagate faults to the applicatidote
that some sanity checks from ext3 are kept in CrookFS, sinee t
are still useful in detecting memory corruption.

One issue we found particularly vexing was correct erroparo
gation; a closer look revealed that ext3 often accidentdignged
error codes or ignored them altogether. Thus, we developau-a
ple static analysis tool to find these bugs so we could fix thEm.
date we have found and fixed roughly 90 places within the code
where EIO was not properly propagated; we are currenthdingl
analysis tools to more thoroughly address this problem.

4.2.4 Layout Policy

Fault management policies that dynamically require diskcep
(e.g, for checksum or replica blocks) must interact with the file
system layout and allocation policies. Since reliabilibfigies are
likely to care about the location of the allocated blockgy(to
place blocks away from each other for improved reliabilitye
have added two interfaces to CrookFS. The first exposesnator
tion about the current layout in the file system. The secoloival
a reliability policy to allocate blocks with options to stdelock
placement. Policy code can use these two interfaces to dbery
file system and request appropriate blocks.

Changes in Core OS

Chained transactions 26
Semantic information 600
Layout and allocation 176
Recovery 108
Total 910
Shepherd infrastructure

Thread model 900
Data structures 743
Read/Write + Chained Transactions 460
Layout and allocation 66
Scheduling 220
Sanity + Checksums + fsck + Mirrors 429
Support for multiple disks 645
Total 3463

Table 1:CrookFS Code Complexity. The table presents the amount
of code added to implement 1/O shepherding as well as a bovakdf
where that code lives. The number of lines of code is countedllying
the number of semi-colons in code that we have added or cdange

4.2.5 Disk Scheduling

For improved performance, the disk scheduler should be inte
grated properly with reliability policies. For examplegthched-
uler should know when a block is replicated, and access thene
block for better performance [19, 39].

We have modified the disk scheduler to utilize replicas as fol
lows. Our implementation inserts a request for each copybtifek
into the Linux disk scheduling queue; once the existing dahieg
algorithm selects one of these requests to be serviced hywlés
remove the other requests. When the request completegtad-s
uler informs the calling policy which replica was serviced, that
faults can be handled appropriatetyd, by trying to read the other
replica). Care must be taken to ensure that replicated stsjaee
not grouped and sent together to the disk.

4.2.6 Caching

The major issue in properly integrating the shepherd with th
existing buffer cache is ensuring that replicas of the saata do
not simultaneously reside in the cache, wasting memoryuress.
By placing the shepherd beneath the file system, we circumven
this issue entirely by design. When a read is issued to a hilwik
is replicated, the scheduler decides to read one copy ortties; 0
while this block is cached, the other copy will never be resu]
thus only a single copy can reside in cache.

4.2.7 Multiple Disks

One final issue arose from our desire to run CrookFS on mul-
tiple disks to implement more interesting reliability mis. To
achieve this, we mount multiple disks using a concatend&iAtD
driver [11]. The set of disks appears to the file system as amgye |
disk, with the first portion of the address space represgitiia first
disk, the second portion of the address space represehgrgpt-
ond disk, and so forth. By informing CrookFS of the boundaty a
dresses between disks, CrookFS allocation policies cam plata
as desired across disks ¢, data on one disk, a replica on another).

4.2.8 Code Complexity

PostMark TPC-B SSH-Build

Linux ext3 1.00 1.00 1.00
Propagate 1.00 1.05 1.01
Retry and Reboot 1.00 1.05 1.01
Parity 1.14 1.27 1.02
Mirror N ear 1.59 1.41 1.04
Mirror gq 1.65 1.87 1.06
Sanity Check 1.01 1.05 1.01
Multiple Lines of Defense 1.10 1.28 1.01

Table 2:Performance Overheads. The table shows the performance
overhead of different policies in CrookFS relative to unified ext3. Three
workloads are run: PostMark, TPC-B, and ssh. Each worklaadun five
times; averages are reported (there was little deviatid®ynning times for
standard ext3 on PostMark, TPC-B, and SSH-Build are 51,32%8.19
seconds respectively. The Multiple Lines of Defense paticgrporates
checksums, sanity checks, and mirrors.

Propagate 8 Mirror 18
Reboot 15 Sanity Check 10
Retry 15 Multiple Lines of Defense 39
Parity 28 D-GRAID 79

Table 3:Complexity of Policy Code. The table presents the number
of semicolons in the policy code evaluated in Section 5.

5. CRAFTING A POLICY

We now explore how I/O shepherding simplifies the constoucti
of reliability policies. We make two major points in this siea.
First, the 1/0 shepherding framework does not add a sigmifica
performance penalty. Second, a wide range of useful pelicie
be easily built in CrookFS, such as policies that propagatw®
perform retries and reboots, policies that utilize panityrroring,
sanity checks, and checksums, and policies that operatemaue
tiple disks. Overall, we find that our framework adds less th%
performance overhead on even I/O-intensive workloads fzatchb
policy requires more than 80 lines of policy code to impletmen

We also make two relatively minor points. First, effectivet y
simple reliability policies €.g, retrying requests and performing
sanity checks) are not consistently deployed in commodésfis-
tems, but they should be to improve availability and relighiSec-
ond, CrookFsS is integrated well with the other componentthef
file system, such as layout and scheduling.

5.1 Experimental Setup

The experiments in this section were performed on an Intel Pe
tium 4 machine with 1 GB of memory and up to 4 120 GB 7200
RPM Western Digital EIDE disks (WD1200BB). We used the Linux
2.6.12 operating system and built CrookFS from ext3 therein

To evaluate the performance of different reliability p@gunder
fault-free conditions, we use a set of well-known worklaaéest-
Mark [22], which emulates an email server, a TPC-B variaidi [3
to stress synchronous updates, and SSH-Build, which uspzak
builds the ssh source tree. Table 2 shows the performancesin P
Mark, TPC-B, and SSH-Build of eight reliability policiesgwored

Table 1 summarizes the code complexity of CrookFS. The table in more detail in this section, relative to unmodified ext3.

shows that the changes to the core OS were not overly ingusiv

To evaluate the reliability policies when faults occur, vikess

(i.e., 910 C statements were added or changed); the majority of thethe file system using type-aware fault injection [30] withszpdo-

changes were required to propagate the semantic informaitiout
the type of each block through the file system. Many more lofes

code (.e, 3463) were needed to implement the shepherd infras-

tructure itself. We are hopeful that incorporating 1/0 dshexgling
into file systems other than ext3 will require even smalleoants
of code, given that much of the infrastructure can be reused.

device driver. To emulate a block failure, the pseudo-desimply
returns the appropriate error code and does not issue thatipe
to the underlying disk. To emulate corruption, the pseueziat
changes bits within the block before returning the data. faoé
injection is type aware in that it can be selectively apptieéach
of the 13 different block types in ext3.

Unmodifed Ext3 Policy Reboot Policy Retry Policy

% A v o % A ~ Y % -

. E 2 0= . = 2] =0 = Q =R

R En_ =85, =¥EHEEY «£F Sx =85, =¥EHL5EY £33 Se .‘:EEDQ,:é‘E%:‘-g
:Cgvvwmx—cma‘a:g._::ozo S5 ECTO R LTS ESS3ES 2020 _C‘:E'U'U'ONA"UNE}—':'Un—':ﬂOBO
SR ESSS O E2SEESEECENY SRESSEPEXESESEEC 2E 203 E&:““SE:?’“N: £ 8 2E 23
S 500855 EC s EESEL5C80 88500055 E0 25 EESE2ECD S8 5008556025 EESEZESD

inode FHH H f f [LT | |

dir an | H | |

bitmap [[

ibitmap N e

indirect [Ql H [[[L] []]

data —— — [|

super m

g-desc +

J-super m

J-revoke .

Jdesc i

J-commit m

J-data +

Key: /retry,— propagate, | stop, Qno recovery

Figure 7:Comparison of Ext3, Reboot, and Retry PoliciesThe table shows how unmodified ext3 (left) and CrookFS wittbaat (middle) and a

retry (right) policy react to read faults. Along the x-axdifferent workloads are shown; each workload stresse®e#tposix API call or common file system
functionality (e.g., path lookup). Along the y-axis, th#fedent data structures of the file system are presentedh Bag) location presents the results of a
read fault injection of a particular data structure (y) undiae given workload (x). The four symbols ¢, |, and O) represent the detection and recovery
techniques used by the file systems. If multiple technigueessd, the symbols are superimposed. A gray box indichtewarkload does not access the

given block type. Some columns represent multiple worktoapen*— (open, stat, access); chmoé* (chmod, chown); fsync* (fsync, sync).

5.2 Propagate

The first and most basic question we answer is: how costly is it
to utilize the shepherding infrastructure within CrookF®?mea-
sure the basic overhead of 1/0 shepherding, we considerirtie s
plest reliability policy: a null policy that simply propatgs errors
through the file system. Table 3 reports the number of linendé
to implement each reliability policy; the basic propagatéiqy is
extremely simple, requiring only 8 statements.

The second line of Table 2 reports the performance of thegprop
gate policy, normalized with respect to unmodified Linux3eXor
the propagate policy, the measured slowdowns are 5% ordess f
all three workloads. Thus, we conclude that the basic itrinagire
and its threaded programming model do not add noticeable ove
head to the system.

5.3 Reboot vs. Retry

We next show the simplicity of building robust policies give
our 1/0O shepherding framework. We use CrookFS to implement
two straightforward policies: the first halts the file systapon a
fault (with optional reboot); the second retries the faitgutration
a fixed number of times and then propagates the error codesto th
application. The pseudo code for these two policies wasepted
earlier §3.3). As shown in Table 3 the actual number of lines of
code needed to implement these policies is very small: 18doh.

To demonstrate that CrookFS implements the desired rktiabi
policy, we inject type-aware faults on read operations. ffess
many paths within the file system, we utilize a synthetic iaak
that exercises the POSIX file system API. The three graph&in F
ure 7 show how the default ext3 file system, the Reboot, and/Ret
policies respond to read faults for each workload and foh &#ack
type. The leftmost graph (taken from [30]) shows that thexdief
ext3 file system does not have a consistent policy for dealiitiy
read faults; for example, when reading an indirect bloclsfas
part of the file writing workload, the error is not even progtegl to
the application.

The middle and rightmost graphs of Figure 7 show CrookFsS is
able to correctly implement the Reboot and Retry policiesgef/-
ery workload and for every type of block, CrookFS either stop
the file system or retries the request and propagates the aso
desired. Further, during fault-free operation, the Crd®kinple-

Throughput

80
40 |

tx/sec

No Failure ——

I System Reboot —— |

80

40 + 1
o FS Reboot ——

80
40 +

80
40

tx/sec

tx/sec

tx/sec

Retry(~1 Sec) —— 1
200 300

0 100

Time (sec)
Figure 8:Reboot vs. Retry (Throughput). The throughput of Post-
greSQL 8.2.4 running pgbench is depicted. The databasdiaized with
1.5 GB of data, and the workload performs a series of simpleEEH's.
Four graphs are presented: the first with no fault injectedpft and the
next three with a transient fault. The bottom three graphmasthe differ-
ent responses from three different policies: full systeboog, file system
reboot, and retry.

mentation of these two policies has negligible overheadilera
shows that the performance of these two policies is equivate
the simple Propagate policy on the three standard workloads

Figure 8 compares the availability implications of systeinaot,
a file system microreboot (in which the file system is unmodinte
and remounted), and retrying in the presence of a transaeitt f
For these experiments, we measure the throughput of PE8Sdre
8.2.4 running a simple database benchmark (pgbench) aver ti
we inject a single transient fault in which the storage syste
unavailable for one second. Not surprisingly, the full reto@an be
quite costly; the system takes nearly a minute to reboot,tlaeil
delivers lower throughput for roughly another minute asdaehe
warms. The microreboot fairs better, but still suffers frima same
cold-cache effects. Finally, the simple retry is quite efffee in the
face of transient faults.

Availability and Failure Rate

8-nines ————————— o

— . Retry (~1 sec) —e—

€ T7-nines ¢ FS Reboot &

& 6-nines - Sys Reboot --w-,

5 5-nines

2 4-nines - _v_.&'-“g

S 3-nines e

S ,__Vﬁ

S 2-nines ,,._-.-.:3’:31

< tnine g®Y .]
15301 361212 1213 61
mmh hhhdd wwmm my

Mean time between transient failures

Figure 9: Reboot vs. Retry (Availability). The graph shows
the computed availability (in terms of “nines”) plotted weis the mean
time between transient failures for the three policiest $ystem reboot, file
system reboot, and retry. The system is considered “availalshen its

delivered performance is within 10% of average steadyegpatrformance.

Given these measurements, one can calculate the impaetsaf th
three reliability policies on system availability. Figudeplots sys-
tem availability as a function of the frequency of transitntlts,
assuming that unavailability is due only to transient faaltd that
the system is available when its delivered throughput ikiwit 0%
of its average steady-state throughput. To calibrate tipecrd
frequency of transient faults, we note that although masitsien-
counter transient faults only a few times a year, a poorlyaveng
disk may exhibit a transient fault once per week [3]. Given a
weekly transient fault, the reboot strategy has availghdf only
“three 9s”, while the retry strategy has “six 9s”.

In summary, it is well known that rebooting a system when a
fault occurs has a large negative impact on availabilityvéer,
many commodity file systems deployed today still stop théesys
instead of retrying an operation when they encounter aigahs
error (.9, ext3 and ReiserFS [30]). With CrookFS, one can easily
specify a consistent retry policy that adds negligible slown and
can improve availability markedly in certain environments

5.4 Parity Protection

With the increasing prevalence of latent sector errors fjitg,
systems should contain reliability policies that protegaiast data
loss. Such protection is usually available in high-end R&[DO],
but not in desktop PCs [30]. For our next reliability policye
demonstrate the ease with which one can add parity protetdia
single drive so that user data can survive latent sectorserro

The parity policy is slightly more complex than the retry agnd
boot policies, but is still quite reasonable to implemen€inokFS;
as shown in Table 3, our simple parity policy requires 28diné
code. As described in Section 4.1.4, calculating paritgieffitly is
a non-idempotent operation, and thus the policy code mukine
old-value logging. We employ a static parity scheme, whidtisa
one parity block fork file system blocks K is configured at boot
time). A static map is used to locate parity blocks.

To help configure the value df, we examine the trade-off be-
tween the probability of data loss and space overhead. &itoir
shows both the probability of data loss (bottom) and theepaer-
head (top) as a function of the size of the parity set. To ¢aleu
the probability of data loss, we utilize recent work repugtthe fre-
quency of latent sector errors [4], as described in the figapgion.
The bottom graph shows that using too large of a parity sefslea
to a high probability of data loss; for example, one paritychl for
the entire disk (the rightmost point) has over a 20% chanac&tat
loss. However, the top graph shows that using too small ofigypa
set leads to high space overheads; for example, one pauiti¢ per

g 20) Space Overhead —=— |
g 30
g 20
g 10
%) 0 ottt
100

g 1r
~ 001
Qo
E le-04

le-06 _ Prob. of Data Loss —s—

8 64256 1 4 16 64256 1 4 16 128
KB MB GB
Size of a Parity Set ((k+1)*BlockSize)

Figure 10:0Overhead and Reliability with Parity. The bottom graph
shows the probabilty of data loss and the top graph the spaeehead, as
the size of the parity set is increased from 2 4-KB blocks if@dgnt to
mirroring) to one parity block for the entire disk. To comgyirobability
of data loss, we focused on the roughly 1 in 20 ATA disks tHaibiéad
latent sector errors; for those disks, the data in [4] repotthat they exhibit
roughly 0.01 errors per GB per 18 months, or a block failuréeré&'sz of
2.54 x 10~8 errors per block per year. Thus, if one has such a disk,
the odds of at least one failure occurring Is— P(NoFailure) where
P(NoFailure) = (1 — Fg)N on adisk of sizeV. For a 100 GB disk,
this implies a 63% chance of data loss. A similar analysisgplied to
arrive at the bottom graph above, but assuming one must hgeerore)
failures within a parity set to achieve data loss. Note that analysis
assumes that latent sector errors are independent.

Random Sequential
g Ext3 mmmm 5 60
2 Parity —— 2
iED, w/ Fault s iED, 40
5 5
Qo Qo
5 5 20
3 3
2 2
£ £
= = 0
Read Write Read Write

Figure 11:Parity Throughput. The figure plots the throughput of the
parity policy under some simple microbenchmarks. For setiglewrites,
we simply write 24 MB to disk. For random reads and writes, \tlece
read or update random 4-KB blocks in a large (2 GB) file. Fordeaboth
the normal and failure cases are reported; failures are atgel by causing
each initial read to fail which triggers reconstruction. &aexperiment is
repeated 60 times; averages and standard deviations aerteq.

file system block (the leftmost point) is equivalent to miimg and
wastes half the disk. A reasonable trade-off is found wittitpa
sets between about 44 KB and 1 MB£ 10 andk = 255); in this
range, the space overhead is reasonalde less than 10%) while
the probability of loss is smali.€., less than 0.001%). In the rest
of our parity policies, we use parity sets/of= 10 blocks.

Adding parity protection to a file system can have a large thpa
on performance. Figure 11 shows the performance of theyparit
policy for sequential and random access workloads thatidrere
read or write intensive. The first graph shows, given no satittat
random reads perform well; however, random updates are quit
slow. This result is not surprising, since each random wpdat
quires reading the old data and parity and writing the new datl
parity; on a single disk, there is no overlap of these |/Oslamtte
the poor performance. The second graph shows that whenetere
no faults, the performance impact of parity blocks on setjaellO
is minimal, whether performing reads or writes. The parijiqy

Writing Reading
30 30
25 .25
g 20 g 20
o 15 o 15
.E 10 E 10
5 5
0 0

None Near Far
Replication Strategy

None Near Far
Replication Strategy

Figure 12:Mirroring: Layout and Scheduling. The leftmost graph
shows the average cost of writing a small file (4 KB) synchushoto disk,

under three different replication strategies. The righgingraph shows the
average cost of reading a random 4 KB block alternately frovo files.

Different replication strategies are used; “None” indie& no replication,

“Near” that replicas are placed as close to the original asgsible, and

“Far” that replicas are placed approximately 20 GB away).

code optimizes sequential write performance by bufferindgiple
updates to a parity block and then flushing the parity block in
chained transaction. Finally, given a latent sector ernogach ini-
tial read, read performance is significantly slower becalselata
must be reconstructed; however, this is (hopefully) a rasec

In summary, CrookFS can be used to add parity protection to
file systems. Although parity protection can incur a highfger
mance cost for random update-intensive workloaslg,(TPC-B
in Table 2), it still adds little overhead in many cases. Wkehe
that parity protection should be considered for desktosfitems,
since it enables important data to be stored reliably evémeipres-
ence of problematic disks.

5.5 Mirroring

For parity protection, we assumed that the parity locati@s w
determined when the file system was created. However, iraprov
performance or reliability, more sophisticated policiesymwish to
control the location of redundant information on disk. Welexe
this issue in the context of a policy that mirrors user datzxks.
The code for this policy has been present&13); implementing it
requires 18 statements, as shown in Table 3.

We first examine the cost of mirroring during writes. The-left
most graph of Figure 12 presents the results of a simple enpet
that repeatedly writes a small 4 KB block to disk synchrompus
Three approaches are compared. The first approach doesmot mi
ror the block (None); the second does so but places the capgeas
to the original as possible (Near); the third places the cpyar
away as possible (Far). As one can see, placing the copyynearb
is nearly free, whereas placing the blocks far away exactgla h
performance cost (a seek and a rotation).

However, when reading back data from disk, spreading nsirror
across the disk surface can improve performance [19, 39k Th
rightmost graph of the figure shows an experiment in whichoa pr
cess reads a random block alternately from each of two fibesepll
on opposite ends of the disk. Without replication (None)fqre
mance is poor, incurring high seek costs. With the file repfiear
its original (Near), there is also no benefit, as expectedalj
with replicas far away, read performance improves drarabyic
the scheduler is free to pick the copy to read from, reducougss
time by nearly a factor of two.

In summary, the best choice for mirror locations is highly nu

ever, in other cases, the location does matter. If spatiadiglized
faults are likely, or read operations dominategy(in a transactional
workload), the Far replication strategy is most appropridtow-
ever, if data write performance is more criticald, in an archival
scenario), the Near strategy may be the best choice. In a®; ca
CrookFS can be used to dynamically choose different blogk la
outs within a reliability policy.

5.6 Sanity Checks

Our next policy demonstrates that CrookFS allows different
liability mechanisms to be applied to different block typeSor
example, different sanity checks can be applied to diffebéock
types; we have currently implemented sanity checking ofl@so

Sanity checking detects whether a data structure has been co
rupted by comparing each field of the data structure to itsiptes
values. For example, to sanity check an inode, the mode af-an i
ode is compared to all possible modes and pointers to dat&dlo
(i.e., block numbers) are forced to point within the valid rangke T
drawback of sanity checks are that they cannot detect bizpton
that does not lead to invalid values.g, a data block pointer that
is shifted by one is considered valid as long as it pointsiwithe
valid range).

Table 3 shows that sanity checks require only 10 stateménts o
policy code, since the 1/O shepherd contains the correspgnd
primitive. To evaluate the performance of inode sanity &frex;
we constructed two inode-intensive workloads: the firstiseane
million inodes sequentially while the seconds reads 500des in
a random order. Our measurements (not shown) reveal that san
ity checking incurs no measurable overhead relative to #seb
line Propagate policy, since the sanity checks are perfdran¢he
speed of the CPU and require no additional disk accessesx-As e
pected, sanity checks also add no overhead to the threeomolk|
presented in Table 2.

In conclusion, given that sanity checking has no perforreanc
penalty, we believe all file systems should sanity check siate-
tures; we note that sanity checking can be performed in iaddit
to other mechanisms for detecting corruption, such as chusek
ming. Although file systems such as ext3 do contain someysanit
checks, it is currently done in aad hocmanner and is diffused
throughout the code base. Due to the centralized architeciu
1/0 shepherding, CrookFS can guarantee that each bloclos pr
erly sanity checked before being accessed.

5.7 Multiple Levels of Defense

We next demonstrate the use of multiple data protection mxech
nisms within a single policy. Specifically, the multiple és of de-
fense policy uses checksums and replication to protechapdata
corruption. Further, for certain block types, the policyoys re-
pair routines when a structure does not pass a checksum match
looks mostly “OK” (e.g, all fields in an inode are valid except time
fields). Finally, if all of these attempts fail to repair mesa in-
consistencies, the system unlocks the block, queues ardingen
requests, runssck, and then remounts and begins running again.
As indicated in Table 3, the multiple levels of defense poigcone
of the more complex policies, requiring 39 lines of code.

Figure 13 shows the activity over time in a system employing
this policy for four different fault injection scenariosy €ach case,
the workload consists of reading a single inode. The topmpart
of the timeline shows what happens when there are no distsfaul

anced and depends on the workload. As expected, when the work the inode and its checksum are read from disk and the chesksum

load contains a significant percentage of metadata opesafper-
formance suffers with mirroring, regardless of the mirmmedtion
(e.g, the PostMark and TPC-B workloads shown in Table 2). How-

match, as desired. In the next experiment, we inject a sidigle
fault, corrupting one inode; in this case, when the policyssinat
the checksums do not match, it reads the alternate inodehwhic

Multiple Levels of Defense

. .
Compare [} Checksum matches r
Checksum Blk r
Inode Blk r
Rgellce?Blk] _'Checksum mismatch; fetch replica [
ChecksumpBIk F r
Inode Blk o
Repair 1 i ils: i i F
Comppare] 1 Replica fails; semantic repair works [
RCE|ICB Blk 4 l— r
mpar L
Checksum BIk r
e - f

25 secs& Fsck 9
1 | Al fails; fsck is run r
Compare 9] r
Rcellca Blk _ r
Checksun’? Blk r
node Bk r f
0 0.5 1 1 5 2 25 3 35 4

Time (ms)

Figure 13:A Multi-Level Policy. The figure shows four different runs
of the multiple lines of defense policy. From top to bottoatheexperiment
induces a new fault and the y-axis highlights which actiandistem takes.
These experiments use UML, which impacts absolute timing.

matches, as desired. In the third, we perform a small caompt
of both copies of the inode; here, the policy finds that neithe
ode’s calculated checksum matches the stored checksurfindsit
that the inode looks mostly intact and can be repaired sirtgty,
clears a non-zero dtime because the inode is in use). In alr fin
experiment, we corrupt both copies of the inode more drastic

In this case, all of these steps fail to fix the problem, andptble
icy runs the fullf sck; when this action completes, the file system
remounts and continues serving requests (not shown).

The performance overhead of adding multiple levels of defen
for inode blocks is summarized in Table 2. Given no faultg th
basic overheads of this policy are to verify and update tloelen
checksums and to update the inode replicas. Although upgati-
disk checksums and replicas is costly, performing muliiglels of
defense has a smaller performance penalty than some ofi@epo
since the checks are applied only to inode blocks.

5.8 D-GRAID

To demonstrate the full flexibility of CrookFS, we consider a
fine-grained reliability policy that enacts different madis for dif-
ferent on-disk data types. We explore this policy given ipldt
disks. In this final policy, we implement D-GRAID style repli
cation within the file system [32]. In D-GRAID, directoriesea
widely replicated across many disks and a copy of eachifdegifs
inode, all data blocks, and any indirect blocks) is mirroaed iso-
lated within a disk boundary. This strategy ensures gracefgra-
dation in that the failure of a disk does not render all of theacn
the array unavailable.

With shepherding, the D-GRAID policy is straightforwardno-
plement. First, the policy code for important metadata l{sas di-
rectories and the superblock) specifies a high degree a€atipin.
Second, the policy for inode, data, and indirect blocks i§igsdhat
a mirror copy of each block should be dynamically allocaea t
particular disk. As indicated in Table 3, the D-GRAID polis-
quires 79 statements; although this is more than any of ther ot
policies, it is significantly less than was required for thigioal
D-GRAID implementation [32].

Figure 14 presents the availability and performance of KF&o
D-GRAID. The leftmost graph shows the availability benefitth
a high degree of metadata replication, most files remairiadlei
even when multiple disks fail. The rightmost graph shows per
formance overhead; as the amount of metadata replication is
creased from one to four, the time for a synchronous writel (an
thus metadata-intensive) benchmark increases by 25%.

Availability Performance
< 1.5
9_/100% 10_Way o 14
2 80% S-way s
] l-way = 3 13
= 60% k)
T H 1.2
I 40% N
8 20% -
T ow
0 2 46 810 1 2 3 4
Disk Failures Metadata Replication

Figure 14:D-GRAID Availability and Performance. The graphs
show the availability and performance of D-GRAID on a wogd@reating
1000 4-KB files. On the left, each line varies the number oadaa repli-
cas, while increasing the number of injected disk failuresg the x-axis
up to the full size of an emulated 10-disk array. The y-axispthe per-
centage of files available. On the right, performance on fiisks is shown
as the number of metadata replicas increases; the y-axiwsistowdown
compared to a single copy.

In conclusion, CrookFS is particularly interesting givenltia
ple disks since it enables the file system to add reliabiégtdres
across the disks without a separate volume manager (mueh lik
ZFS [33]). Due to the ability of CrookFS to enact differentipies
for different block types, we are able to implement eventivedty
complex reliability policies, such as D-GRAID.

6. RELATED WORK

The philosophy behind 1/0 Shepherding is similar to work on
aspect-oriented programming, stackable file systems, dhges-
tion manager and Click. We discuss each in turn.

Aspect-oriented programming [9, 23] addresses the geieeral
sue that code to implement certain high-level propertes, (‘per-
formance”) isscatteredthroughout systems, much as we observed
that fault-handling is often diffused through a file systefspect-
oriented programming provides language-level assistamém-
plementing these “crosscutting concerns,” by allowingréevant
code to be described in a single place and then “weaved” irgo t
code with an aspect compiler. Thus, one could consider ingild
1/0 Shepherding with aspects; however, the degree of iatiegr
required with OS subsystems could make this quite chalhengi

Stackable file systems provide a more flexible way of config-
uring file systems from a set of composable layers [18, 40]. An
1/0 Shepherd could be viewed as a stackable layer that gisrun
neath the file system proper; however, we modified many system
components to build the shepherd, breaking the encapsultat
stacking implies.

We drew inspiration from both the Congestion Manager (CM) [1
5] and Click [27]. CM centralizes information about netwadn-
gestion within the OS, thus enabling multiple network floovsiti-
lize this knowledge and improve their behavior; in a simitean-
ner, the I/O Shepherd centralizes both information androbanhd
thus improves file system reliability. Click is a modular gy for
assembling customized routers [27]. We liked the claritCbEk
router configurations from basic elements, and as a resirk tre
parallels in our policies and primitives.

We also note that chained transactions are similazotmpen-
sating transactionsn the database literature [25]; both deal with
the case where committed transactions are treated asrsitaiee
and yet there is a need to change them. In databases, tlgsitu
commonly arises when an event external to the transactastal
ting occurs €.g, a customer returns a purchase); in our case, we
use chained transactions in a much more limited mannerjfspec
cally to handle unexpected disk failures during checkppoint

7. CONCLUSION

In this paper, we have described a flexible approach to iktiab
in file systems. 1/0 Shepherding provides a way to tailorai@li
ity features to fit the needs of applications and the demahtizeo
environment. Through its basic design, shepherding makgis
ticated policies simple to describe; through careful iraéign with
the rest of the system, shepherding implements policiesesffly
and correctly.

7.1 Porting the Shepherd

Our intention is to eventually specify a general shepheytiiyer
of which all file systems can take advantage. Similar to oiher
terfaces internal to the OS [24], our goal is to enable mieltife
systems to leverage the same functionality.

Currently, we are porting shepherding to Linux ext2 and Reis
erFS. The ext2 port has been straightforward, as it is simplgn-
journaling version of ext3. Thus, we removed all consisyenan-
agement code and embrace the ext2 philosophy of writingbltx
disk in any order. An additiondlsck-like pass before mounting
(not yet implemented) could rectify inconsistencies if egiced.

ReiserFS has been more challenging as it utilizes entiriély d
ferent on-disk structures than the ext family. Thus far, weeh
successfully built simple policies and are working on in&tipn
with ReiserFS consistency management (we are using Rela&a3
journaling mode). Through this work, we are slowly gainimnfi-
dence about the general applicability of the shepherdipgoazh.

7.2 Lessons

Adding reliability through the I/O shepherd was simple imso
ways and challenging in others. In the process of buildirgeih-
vironment, we have learned a number of lessons.

e Interposition simplifies fault managemen©ne of the most
powerful aspects of /0 Shepherding is its basic design: the
shepherd interposes on all I/O and thus can implement a reli-
ability policy consistently and correctly. Expecting eddil-
ity from code that is scattered throughout is unrealistic.

Block-level interposition can make things difficulthe 1/O
shepherd interposes on block reads and writes that the file
system issues. While natural for many policiey(repli-
cating blocks of a particular type), block-level intergmsi
makes some kinds of policies more difficult to implement.
For example, implementing stronger sanity checks on direc-
tory contents (which span many blocks) is awkward at best.
Perhaps a higher-level storage system interface would pro-
vide a better interposition target.

Shepherding need not be costlhe shepherd is responsible
for the execution of all I/O requests in the system. Careful i

tegration with other subsystems is essential in achieving |

overheads, with particular attention paid to the concuyen
management infrastructure.

Good policies stem from good informationAlthough not

the main focus of this paper, shaping an appropriate relia-
bility policy clearly requires accurate data on how the disk
the system is using actually fail as well as the nature of the
workloads that run on the system. Fortunately, more data is
becoming available on the true nature of disk faults [4, 31];
systems that deploy I/O shepherding may also need to in-
corporate a fault and workload monitoring infrastructuse t
gather the requisite information.

e Fault propagation is important (and yet often bugghh I/O
shepherd can mask a large number of faults, depending on
the exact policy specified; however, if a fault is returnée, t
file system above the shepherd is responsible for passing the
error to the calling application. We have found many bugs
in error propagation, and are currently working on a more
general analysis of file systems to better understand (ajpd fix
their error propagation behavior.

Fault handling in journaling file systems is challenginBy

its nature, write-ahead logging places intentions on dlisks
active fault handling by its nature must behave reasonably
when these intentions cannot be met. Chained transactions
help to overcome this inherent difficulty, but at the cost of
complexity (certainly itis the most complex part of our chde
Alternate simpler approaches would be welcome.

This last lesson will no doubt inform our future work. We are
particularly interested in the question of whether futiceage sys-
tems should employ journaling or shadow paging [15]; theee a
many reliability trade-offs in these approaches that ateyepwell
understood. Further work will be required to provide a deépeel
of insight on this problem.

Acknowledgments

We thank the anonymous reviewers and Frans Kaashoek (the I/O
shepherd’s shepherd) for their tremendous feedback, vdaiaked

us to rethink and rework many aspects of both our presentatio
and technical content. We would also like to thank Nitin Agah

for his earlier work and feedback on this project, and the @6L
Wisconsin for their tireless assistance.

This material is based upon work supported by the Nationial Sc
ence Foundation under the following grants: CCF-062148¥$C
0509474, CCR-0133456, as well as by generous donations from
Network Appliance and Sun Microsystems.

Haryadi S. Gunawi was awarded an SOSP student travel seholar
ship, supported by Infosys, to present this paper at theecente.
Swetha Krishnan was awarded an SOSP student travel sdtiplars
supported by Hewlett-Packard.

Any opinions, findings, and conclusions or recommendatias
pressed in this material are those of the authors and do ©esne
sarily reflect the views of NSF or other institutions.

8.

(1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

REFERENCES

David G. Andersen, Deepak Bansal, Dorothy Curtis, Srini
vasan Seshan, and Hari Balakrishnan. System Support for
Bandwidth Management and Content Adaptation in Internet
Applications. InOSDI '00, pages 213-226, San Diego, CA,
October 2000.

Dave Anderson, Jim Dykes, and Erik Riedel. More Than an
Interface: SCSI vs. ATA. IFFAST '03 San Francisco, CA,
April 2003.

Lakshmi Bairavasundaram. On the frequency of transient
faults in modern disk drives. Personal Communication, 2007
Lakshmi Bairavasundaram, Garth Goodson, Shankar Rasup
thy, and Jiri Schindler. An Analysis of Latent Sector Errors
in Disk Drives. In SIGMETRICS '07 pages 289-300, San
Diego, CA, June 2007.

Hari Balakrishnan, Hariharan S. Rahul, and Srinivasan S
shan. An Integrated Congestion Management Architecture
for Internet Hosts. I'SIGCOMM '99 pages 175-187, Cam-
bridge, MA, August 1999.

Wendy Bartlett and Lisa Spainhower. Commercial Fault To
erance: A Tale of Two SystemEEEE Transactions on De-
pendable and Secure Computjrg1):87—-96, January 2004.
Aaron B. Brown and David A. Patterson. Undo for Operators
Building an Undoable E-mail Store. IWSENIX '03 San An-
tonio, TX, June 2003.

Andy Chou, Jun-Feng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. An Empirical Study of Operating System
Errors. INSOSP '01 pages 73-88, Banff, Canada, October
2001.

Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg
Smolyn. Using AspectC to Improve the Modularity of
Path-Specific Customization in Operating System Code. In
ESEC/FSE-9September 2001.

Peter Corbett, Bob English, Atul Goel, Tomislav Grcana
Steven Kleiman, James Leong, and Sunitha Sankar. Row-
Diagonal Parity for Double Disk Failure Correction. FAST

‘04, pages 1-14, San Francisco, CA, April 2004.

Timothy E. Denehy, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Bridging the Information Gap in
Storage Protocol Stacks. [ASENIX '02 pages 177-190,
Monterey, CA, June 2002.

Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou,
and Benjamin Chelf. Bugs as Deviant Behavior: A General
Approach to Inferring Errors in Systems Code 3OSP '01
pages 57-72, Banff, Canada, October 2001.

[29

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

—_

[30]

[31]

[32]

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. [34]

The Google File System. IBOSP '03 pages 29-43, Bolton
Landing, NY, October 2003.

Jim Gray. A Census of Tandem System Availability Betwee
1985 and 1990. Technical Report 90.1, Tandem Computers,
1990.

Jim Gray and Andreas Reutdiransaction Processing: Con-
cepts and Techniqueslorgan Kaufmann, 1993.

Roedy Green. EIDE Controller Flaws Version 24.
http://mindprod.com/jgloss/eideflaw.html, February 200
Robert Hagmann. Reimplementing the Cedar File System U
ing Logging and Group Commit. IBOSP '87 Austin, TX,
November 1987.

John S. Heidemann and Gerald J. Popek. File-systeni-deve
opment with stackable layer&aCM Transactions on Com-
puter Systemd2(1):58-89, 1994.

Hai Huang, Wanda Hung, and Kang G. Shin. FS2: dynamic
data replication in free disk space for improving disk perfo
mance and energy consumptionS®SP '05pages 263-276,

Brighton, UK, October 2005. [

Gordon F. Hughes and Joseph F. Murray. Reliability aad S
curity of RAID Storage Systems and D2D Archives Using
SATA Disk Drives.ACM Transactions on Storagé(1):95—
107, February 2005.

[35]

[36]

[39]

40]

Hannu H. Kari, H. Saikkonen, and F. Lombardi. Detectidén
Defective Media in Disks. IIThe IEEE International Work-
shop on Defect and Fault Tolerance in VLSI Systepages
49-55, Venice, Italy, October 1993.

Jeffrey Katcher. PostMark: A New File System Benchmark
Technical Report TR-3022, Network Appliance Inc., October
1997.

Gregor Kiczales, John Lamping, Anurag Mendhekar, €hri
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John
Irwin. Aspect-Oriented Programming. IRroceedings of
the European Conference on Object-Oriented Programming
(ECOOP) pages 220-242, 1997.

Steve R. Kleiman. Vnodes: An Architecture for Multigtde
System Types in Sun UNIX. [IWSENIX Summer '86ages
238-247, Atlanta, GA, June 1986.

Henry F. Korth, Eliezer Levy, and Abraham Silberschatz
A Formal Approach to Recovery by Compensating Transac-
tions. InVLDB 16 pages 95-106, Brisbane, Australia, August
1990.

Larry Lancaster and Alan Rowe. Measuring Real WorldeDat
Availability. In Proceedings of the LISA 2001 15th Systems
Administration Conferengepages 93-100, San Diego, Cali-
fornia, December 2001.

Robert Morris, Eddie Kohler, John Jannotti, and M. Fran
Kaashoek. The Click Modular Router. BOSP '99 pages
217-231, Kiawah Island Resort, SC, December 1999.

Kiran Nagaraja, Fabio Olivera, Ricardo Bianchini, Racd P.
Martin, and Thu D. Nguyen. Understanding and Dealing with
Operator Mistakes in Internet Services. @SDI '04, San
Francisco, CA, December 2004.

David Patterson, Garth Gibson, and Randy Katz. A Case fo
Redundant Arrays of Inexpensive Disks (RAID).SiGMOD

'88, pages 109-116, Chicago, IL, June 1988.

Vijayan Prabhakaran, Lakshmi N. Bairavasundaram,nNit
Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. IRON File SystemsS@SP '05
pages 206-220, Brighton, UK, October 2005.

Bianca Schroeder and Garth Gibson. Disk failures inrda
world: What does an MTTF of 1,000,000 hours mean to you?
In FAST '07 pages 1-16, San Jose, CA, February 2007.
Muthian Sivathanu, Vijayan Prabhakaran, Andrea C.a&ip
Dusseau, and Remzi H. Arpaci-Dusseau. Improving Storage
System Availability with D-GRAID. InFAST '04 pages 15—
30, San Francisco, CA, April 2004.

[33] Sun Microsystems. ZFS: The last word in file systems.

Wwww.sun.com/2004-0914/feature/, 2006.

Rajesh Sundaram. The Private Lives of Disk Drives.
http://www.netapp.com/go/techontap/matl/sample/
0206totresiliency.html, February 2006.

Michael M. Swift, Brian N. Bershad, and Henry M. Levy.
Improving the Reliability of Commodity Operating Systems.
In SOSP '03Bolton Landing, NY, October 2003.

Nisha Talagala and David Patterson. An Analysis of ERe-
haviour in a Large Storage System. The IEEE Workshop
on Fault Tolerance in Parallel and Distributed SysterSan
Juan, Puerto Rico, April 1999.

[37] Transaction Processing Council. TPC Benchmark B Stehd

Specification, Revision 3.2. Technical Report, 1990.

[38] Stephen C. Tweedie. Journaling the Linux ext2fs Filst&g.

In The Fourth Annual Linux Expdurham, North Carolina,
May 1998.

X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishna-
murthy, and T. E. Anderson. Trading Capacity for Perfor-
mance in a Disk Array. I©SDI '00, San Diego, CA, October
2000.

Erez Zadok and Jason Nieh. FiST: A Language for Staekabl
File Systems. IUSENIX '0Q pages 55-70, San Diego, CA,
June 2000.

