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Motivation

• As systems grow in size and complexity…
• Must tolerate more faults, more types of faults

• Modern storage systems take ad-hoc approach

• Not clear which faults to tolerate

• Instead: tolerate arbitrary (Byzantine) faults
• But, Byzantine fault-tolerance = expensive?

• Fast reads, slow large writes
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Summary of Results

We present a low overhead Byzantine fault-
tolerant erasure-coded block storage protocol

• Write overhead: 2-round + crypto. checksum

• Read overhead: cryptographic checksum

Performance of our Byzantine-tolerant 
protocol nearly matches that of protocol that 
tolerates only crashes

• Within 10% for large enough requests
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B

Erasure codes
An m-of-n erasure code encodes block B into 
n fragments, each size |B|/m, such that any m
fragments can be used to reconstruct block B

d1 d2 d3 d4 d5

3-of-5
erasure code

d1, …,  d5 ← encode(B)
Read d1, d2, d3
B ← decode(d1, d2, d3)
Read d1, d3, d5
B ← decode(d1, d3, d5)
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Design of Our Protocol



James Hendricks, 7

Parameters and interface

Parameters
• f : Number of faulty servers tolerated

• m ≥ f + 1: Fragments needed to decode block
• n = m + 2f ≥ 3f + 1: Number of servers

Interface: Read and write fixed-size blocks
• Not a filesystem.  No metadata.  No locking.  

No access control.  No support for variable-
sized reads/writes.

• A building block for a filesystem
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2-of-4
Erasure code
Send fragment 
to each server

Write protocol: prepare & commit

B

Response with 
cryptographic 
token

Forward 
tokens

Return 
status

d3

d1

d2

d4

Prepare Commit
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Read protocol: find & read

B

Request 
timestamps

Propose 
timestamp

Read at 
timestamp

Return 
fragments

d1

d2

Find timestamps Read at timestamp
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Read protocol common case

Request 
timestamps and 

optimistically read 
fragments

Return fragments 
and timestamp

B

d1

d2
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Issue 1 of 3: Wasteful encoding
Erasure code m + 2 f
Hash m + 2 f
Send to each server
But only wait for m + f 
responses

� This is wasteful!

d1

d2

d3

d4

B

m: Fragments needed to decode

f: Number of faults tolerated
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Solution 1: Partial encoding

Instead:
- Erasure code m+f
- Hash m+f

- Hear from m+f

Pro: Compute f fewer frags
Con: Client may need to 
send entire block on failure

- Should happen rarely

d1

d2

d3B
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Issue 2: Block must be unique

Fragments must comprise a unique block
• If not, different readers read different blocks

Challenge: servers don’t see entire block
• Servers can’t verify hash of block
• Servers can’t verify encoding of block given 

hashes of fragments
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Sol’n 2: Homomorphic fingerprinting

Fragment is consistent with checksum if hash 
and homomorphic fingerprint [PODC07] match

Key property: Block decoded from 
consistent fragments is unique

hash4
hash3
hash2
hash1

fp2
fp1

d′4

hash4′

fp4 fp4′
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Issue 3: Write ordering 

Reads must return most recently written block
- Required for linearizability (atomic)
- Faulty server may propose uncommitted write
- Must be prevented.  Prior approaches:

4f +1 servers, signatures, or 3+ round writes

Our approach:
- 3f +1 servers, MACs, 2 round writes
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Solution 3: Hashes of nonces

Client Servers

Prepare: Store hash(nonce)
Return noncenonce

Collect nonces

Commit: store nonces

Find timestamps Return timestamp, nonces

Return nonce_hash
with fragment

Read at timestamp

Prepare

nonces

Compare hash(nonce)
with nonce_hash

W
rit

e
R

ea
d



James Hendricks, 17

Bringing it all together: Write
- Erasure code m+f fragments
- Hash & fingerprint fragments
- Send to first m+f servers - Verify hash, fingerprint

- Choose nonce
- Generate MAC
- Store fragment- Forward MACs

to servers

- Verify MAC
- Free older fragments

- Write completed

Overhead: Not in 
crash-only protocol

di

Client Servers



James Hendricks, 18

Bringing it all together: Read
- Request fragments 

from first m servers
- Request latest nonce, 

timestamp, checksum
- Return fragment 

(if requested)
- Return latest nonce, 

timestamp, checksum- Verify provided checksum
matches fragment hash&fp

- Verify timestamps match
- Verify nonces
- Read complete

di

Overhead: Not in 
crash-only protocolClient Servers
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Evaluation
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Experimental setup

• m = f + 1

• Single client, NVRAM at servers
• Write or read 64 kB blocks

- Fragment size decreases as f increases

• 3 GHz Pentium D, Intel PRO/1000

Fragments needed to decode block

Number of faults tolerated
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Prototype implementation

Four protocols implemented:

Our protocol

Crash-only erasure-coded

Crash-only replication-based

PASIS [Goodson04] emulation

Read validation: Decode, encode, hash 4f+1 fragments
4f+1 servers, versioning, garbage collection

All use same hashing and erasure coding libraries

B
yzantine

tolerant

E
rasure

coded
➼ ➼

➼

➼ ➼
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Conclusions

Byzantine fault-tolerant storage can rival 
crash-only storage performance

We present a low overhead Byzantine fault-
tolerant erasure-coded block storage 
protocol and prototype

- Write overhead: 2-round, hash and fingerprint
- Read overhead: hash and fingerprint
- Close to performance of systems that tolerate 

only crashes for reads and large writes
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Backup slides



James Hendricks, 29

Why not multicast?
May be unstable 
or unavailable 
(UDP)

More data means 
more work at 
server (network, 
disk, hash)

Doesn’t scale 
with clients!
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Cryptographic hash overhead
Byzantine storage requires cryptographic hashing.  
Does this matter?

Systems must tolerate non-crash faults
• E.g., “misdirected write”

Many modern systems checksum data
• E.g., Google File System
• ZFS supports SHA-256 cryptographic hash function

May hash data for authentication

Conclusion: BFT may not introduce new hashing
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Is 3f+1 servers expensive?

Consider a typical storage cluster
• Usually more primary drives than parity drives

• Usually several hot spares

Conclusion: May already use 3f +1 servers

Primary drives Parity drives Hot spares
f = number of 

faults tolerated


