
Low-Overhead Byzantine
Fault-Tolerant Storage

James Hendricks, Gregory R. Ganger
Carnegie Mellon University

Michael K. Reiter
University of North Carolina at Chapel Hill

James Hendricks, 2

Motivation

• As systems grow in size and complexity…
• Must tolerate more faults, more types of faults

• Modern storage systems take ad-hoc approach

• Not clear which faults to tolerate

• Instead: tolerate arbitrary (Byzantine) faults
• But, Byzantine fault-tolerance = expensive?

• Fast reads, slow large writes

James Hendricks, 3

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Write bandwidth

Number of faults tolerated (f)

Crash fault-tolerant erasure-coded
storage (non-Byzantine)

Replicated Byzantine
fault-tolerant storage B

an
dw

id
th

 (
M

B
/s

)

Low-overhead erasure-coded
Byzantine fault-tolerant storage

f +1-of-2f +1
erasure-coded

f +1 replicas

3f +1 replicas

James Hendricks, 4

Summary of Results

We present a low overhead Byzantine fault-
tolerant erasure-coded block storage protocol

• Write overhead: 2-round + crypto. checksum

• Read overhead: cryptographic checksum

Performance of our Byzantine-tolerant
protocol nearly matches that of protocol that
tolerates only crashes

• Within 10% for large enough requests

James Hendricks, 5

B

Erasure codes
An m-of-n erasure code encodes block B into
n fragments, each size |B|/m, such that any m
fragments can be used to reconstruct block B

d1 d2 d3 d4 d5

3-of-5
erasure code

d1, …, d5 ← encode(B)
Read d1, d2, d3
B ← decode(d1, d2, d3)
Read d1, d3, d5
B ← decode(d1, d3, d5)

James Hendricks, 6

Design of Our Protocol

James Hendricks, 7

Parameters and interface

Parameters
• f : Number of faulty servers tolerated

• m ≥ f + 1: Fragments needed to decode block
• n = m + 2f ≥ 3f + 1: Number of servers

Interface: Read and write fixed-size blocks
• Not a filesystem. No metadata. No locking.

No access control. No support for variable-
sized reads/writes.

• A building block for a filesystem

James Hendricks, 8

2-of-4
Erasure code
Send fragment
to each server

Write protocol: prepare & commit

B

Response with
cryptographic
token

Forward
tokens

Return
status

d3

d1

d2

d4

Prepare Commit

James Hendricks, 9

Read protocol: find & read

B

Request
timestamps

Propose
timestamp

Read at
timestamp

Return
fragments

d1

d2

Find timestamps Read at timestamp

James Hendricks, 10

Read protocol common case

Request
timestamps and

optimistically read
fragments

Return fragments
and timestamp

B

d1

d2

James Hendricks, 11

Issue 1 of 3: Wasteful encoding
Erasure code m + 2 f
Hash m + 2 f
Send to each server
But only wait for m + f
responses

� This is wasteful!

d1

d2

d3

d4

B

m: Fragments needed to decode

f: Number of faults tolerated

James Hendricks, 12

Solution 1: Partial encoding

Instead:
- Erasure code m+f
- Hash m+f

- Hear from m+f

Pro: Compute f fewer frags
Con: Client may need to
send entire block on failure

- Should happen rarely

d1

d2

d3B

James Hendricks, 13

Issue 2: Block must be unique

Fragments must comprise a unique block
• If not, different readers read different blocks

Challenge: servers don’t see entire block
• Servers can’t verify hash of block
• Servers can’t verify encoding of block given

hashes of fragments

James Hendricks, 14

Sol’n 2: Homomorphic fingerprinting

Fragment is consistent with checksum if hash
and homomorphic fingerprint [PODC07] match

Key property: Block decoded from
consistent fragments is unique

hash4
hash3
hash2
hash1

fp2
fp1

d′4

hash4′

fp4 fp4′

James Hendricks, 15

Issue 3: Write ordering

Reads must return most recently written block
- Required for linearizability (atomic)
- Faulty server may propose uncommitted write
- Must be prevented. Prior approaches:

4f +1 servers, signatures, or 3+ round writes

Our approach:
- 3f +1 servers, MACs, 2 round writes

James Hendricks, 16

Solution 3: Hashes of nonces

Client Servers

Prepare: Store hash(nonce)
Return noncenonce

Collect nonces

Commit: store nonces

Find timestamps Return timestamp, nonces

Return nonce_hash
with fragment

Read at timestamp

Prepare

nonces

Compare hash(nonce)
with nonce_hash

W
rit

e
R

ea
d

James Hendricks, 17

Bringing it all together: Write
- Erasure code m+f fragments
- Hash & fingerprint fragments
- Send to first m+f servers - Verify hash, fingerprint

- Choose nonce
- Generate MAC
- Store fragment- Forward MACs

to servers

- Verify MAC
- Free older fragments

- Write completed

Overhead: Not in
crash-only protocol

di

Client Servers

James Hendricks, 18

Bringing it all together: Read
- Request fragments

from first m servers
- Request latest nonce,

timestamp, checksum
- Return fragment

(if requested)
- Return latest nonce,

timestamp, checksum- Verify provided checksum
matches fragment hash&fp

- Verify timestamps match
- Verify nonces
- Read complete

di

Overhead: Not in
crash-only protocolClient Servers

James Hendricks, 19

Evaluation

James Hendricks, 20

Experimental setup

• m = f + 1

• Single client, NVRAM at servers
• Write or read 64 kB blocks

- Fragment size decreases as f increases

• 3 GHz Pentium D, Intel PRO/1000

Fragments needed to decode block

Number of faults tolerated

James Hendricks, 21

Prototype implementation

Four protocols implemented:

Our protocol

Crash-only erasure-coded

Crash-only replication-based

PASIS [Goodson04] emulation

Read validation: Decode, encode, hash 4f+1 fragments
4f+1 servers, versioning, garbage collection

All use same hashing and erasure coding libraries

B
yzantine

tolerant

E
rasure

coded
➼ ➼

➼

➼ ➼

James Hendricks, 22

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Write throughput

Number of faults tolerated (f)

B
an

dw
id

th
 (

M
B

/s
)

Crash-only replication

based (f +1 = m replicas)

PASIS-emulation

Our protocol

Crash-only erasure-coded

James Hendricks, 23

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Write throughput

Number of faults tolerated (f)

B
an

dw
id

th
 (

M
B

/s
)

Our protocol

Crash-only erasure-coded

64 kB
f +1

16 kB fragments

James Hendricks, 24

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

Write response time
La

te
nc

y
(m

s)

Number of faults tolerated (f)

D. C
rash

-only r
eplicatio

n base
d

C. P
ASIS-emulation

B. Our protocol

A. Crash-only erasure-coded

A B C D

RPC

Hash

Encode

Fingerprint

Overhead breakdown (f =10)

James Hendricks, 25

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

Read throughput
B

an
dw

id
th

 (
M

B
/s

)

Number of faults tolerated (f)

Crash-only replication based

PASIS-emulation(compute bound)

Our protocolCrash-only erasure-coded

James Hendricks, 26

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Read response time
La

te
nc

y
(m

s)

Number of faults tolerated (f)

D. Replicated

C. P
ASIS-emulation

B. Our protocol

A. Erasure-coded

A B C D

RPC

Hash

Encode
Fingerprint

Overhead breakdown (f =10)

James Hendricks, 27

Conclusions

Byzantine fault-tolerant storage can rival
crash-only storage performance

We present a low overhead Byzantine fault-
tolerant erasure-coded block storage
protocol and prototype

- Write overhead: 2-round, hash and fingerprint
- Read overhead: hash and fingerprint
- Close to performance of systems that tolerate

only crashes for reads and large writes

James Hendricks, 28

Backup slides

James Hendricks, 29

Why not multicast?
May be unstable
or unavailable
(UDP)

More data means
more work at
server (network,
disk, hash)

Doesn’t scale
with clients!

James Hendricks, 30

Cryptographic hash overhead
Byzantine storage requires cryptographic hashing.
Does this matter?

Systems must tolerate non-crash faults
• E.g., “misdirected write”

Many modern systems checksum data
• E.g., Google File System
• ZFS supports SHA-256 cryptographic hash function

May hash data for authentication

Conclusion: BFT may not introduce new hashing

James Hendricks, 31

Is 3f+1 servers expensive?

Consider a typical storage cluster
• Usually more primary drives than parity drives

• Usually several hot spares

Conclusion: May already use 3f +1 servers

Primary drives Parity drives Hot spares
f = number of

faults tolerated

