Low-Overhead Byzantine Fault-Tolerant Storage

James Hendricks, Gregory R. Ganger Carnegie Mellon University

Michael K. Reiter
University of North Carolina at Chapel Hill

Motivation

- As systems grow in size and complexity...
 - Must tolerate more faults, more types of faults
 - Modern storage systems take ad-hoc approach
- Not clear which faults to tolerate

- Instead: tolerate arbitrary (Byzantine) faults
- But, Byzantine fault-tolerance = expensive?
 - Fast reads, slow large writes

Write bandwidth

Summary of Results

We present a *low overhead* Byzantine fault-tolerant erasure-coded block storage protocol

- Write overhead: 2-round + crypto. checksum
- Read overhead: cryptographic checksum

Performance of our *Byzantine*-tolerant protocol nearly matches that of protocol that tolerates *only crashes*

Within 10% for large enough requests

Erasure codes

An *m*-of-*n* erasure code encodes block B into *n* fragments, each size |B|/m, such that any *m* fragments can be used to reconstruct block B

Design of Our Protocol

Parameters and interface

Parameters

- f: Number of faulty servers tolerated
- $m \ge f + 1$: Fragments needed to decode block
- $n = m + 2f \ge 3f + 1$: Number of servers

Interface: Read and write fixed-size blocks

- Not a filesystem. No metadata. No locking. No access control. No support for variablesized reads/writes.
- A building block for a filesystem

Write protocol: prepare & commit

Read protocol: find & read

Read protocol common case

Issue 1 of 3: Wasteful encoding

Solution 1: Partial encoding

Issue 2: Block must be unique

Fragments must comprise a unique block

If not, different readers read different blocks

Challenge: servers don't see entire block

- Servers can't verify hash of block
- Servers can't verify encoding of block given hashes of fragments

Sol'n 2: Homomorphic fingerprinting

Fragment is *consistent* with checksum if hash and homomorphic fingerprint [PODC07] match

Key property: Block decoded from consistent fragments is unique

Issue 3: Write ordering

Reads must return most recently written block

- Required for *linearizability* (atomic)
- Faulty server may propose uncommitted write
- Must be prevented. Prior approaches: 4*f*+1 servers, signatures, or 3+ round writes

Our approach:

- 3f+1 servers, MACs, 2 round writes

Solution 3: Hashes of nonces

Write

Prepare

nonce

nonces

Prepare: Store hash(nonce)

Return nonce

Collect nonces

Commit: store nonces

Read

Find timestamps

Return timestamp, nonces

Read at timestamp

Return nonce_hash

with fragment

Compare hash(nonce) with nonce_hash

Bringing it all together: Write

Overhead: Not in crash-only protocol

Servers

Bringing it all together: Read

- Request fragments from first *m* servers
- Request latest nonce, timestamp, checksum
- Verify provided checksum matches fragment hash&fp
- Verify timestamps match
- Verify nonces
- Read complete

- Return fragment (if requested)
- Return latest nonce, timestamp, checksum

Overhead: Not in crash-only protocol

Servers

Evaluation

Experimental setup

- Single client, NVRAM at servers
- Write or read 64 kB blocks
 - Fragment size decreases as f increases

• 3 GHz Pentium D, Intel PRO/1000

Prototype implementation

Four protocols implemented:

Our protocol

Crash-only erasure-coded

Crash-only replication-based

Pasis [Goodson04] emulation

Read validation: Decode, encode, hash 4f+1 fragments

4f+1 servers, versioning, garbage collection

All use same hashing and erasure coding libraries

Erasure coded

Byzantine tolerant

Write throughput

Write throughput

Write response time

Read throughput

Read response time

Conclusions

Byzantine fault-tolerant storage can rival crash-only storage performance

We present a low overhead Byzantine faulttolerant erasure-coded block storage protocol and prototype

- Write overhead: 2-round, hash and fingerprint
- Read overhead: hash and fingerprint
- Close to performance of systems that tolerate only crashes for reads and large writes

Backup slides

Why not multicast?

Cryptographic hash overhead

Byzantine storage requires cryptographic hashing. Does this matter?

Systems must tolerate non-crash faults

• E.g., "misdirected write"

Many modern systems checksum data

- E.g., Google File System
- ZFS supports SHA-256 cryptographic hash function

May hash data for authentication

Conclusion: BFT may not introduce new hashing

Is 3f+1 servers expensive?

Consider a typical storage cluster

- Usually more primary drives than parity drives
- Usually several hot spares

Conclusion: May already use 3f+1 servers