AjaxScope: Remotely Monitoring
Client-side Web-App Behavior

Emre Kiciman Ben Livshits
emrek@microsoft.com livshits@microsoft.com

Internet Services Research Center Runtime Analysis & Design
Microsoft Research Microsoft Research

A Web Application

@ Live Search - Windows Interet Explorer

OO v |g http://maps.live.com/

v“7|)(||Live$ean:r‘: pel 71‘
MSR @ ~ | Links & Ajax View Statistics

Wk [@LiveSearch i_—l

Ta v B v @ v fhPage v G Took

Sign in

Help | Options

Businesses People [T

Web Images Video News Maps MSN Morevy Academic Bzta Books Betz

E skamania hotel x Welcome Collections v Driving directions Traffic Locate me Share~v Printv

25

Sort by relevance v Map all 4p

Gifford Pinchot Nation: Scratch pad A X)

Skamania Lodge

1131 Skamania Lodge Dr,
Stevenson, WA | 4.62mi
(509) 427-7700

Call for free

Unsaved collection v

- i) You must Sign in to save your
S collection

Share v Map all Clear
Didn't find what you were looking
for?

Help us improve

Your scratch pad is empty. To add items
Road

to your scratch pad, you can:
Aerial

- Hover over a search result and choose

Pl A Add to collection
q,.% e &
> Saint Martin o
» Springs’ ~ £
1 o - Add a pushpin to the map
% Cosans Home Vall
I g
-SteveE o g[
E .. (4
e " Moffelts Hot 3%
Columbia River Gorge Springs } £
3 o ol oo
i SR ‘ 2o 2
North Bonnevllle° ; ille =~ / ! i & v& —
R o N eghec ,
; Winans, “Haisteen JFir
I
23 Dma JTrout Creek N
“Mount Pl 2 e Jal)-
M ou<° leasant I = ny = Mt Hood
; Latourel 2 7o 9
ety atoure y ._‘v, <o+ Parkdale, Mount Hood
Business | P iale g = 4
Microsoft* 4 -4 " 23007 Hizrasaft Corparati
Welcome X Virtual Earth™ of Ty e

Ao ¢ 2 v E

© 2007 Microsoft Corporation Privacy Code of Conduct Legal Trademarks Developers

About | Help | Feedback
elntemetlprotected Meode: On #100% v

Done

A Web Application

Talks to >14
backend services
(traffic, images,
search, directions,

ads,

~ 1 MB code

llllllll
s
Aerial

Hybrid

70k lines of
JavaScript code
downloaded to |
the client. o

2855 Functions

Web 1.0 5 Wetk

E Server-side
computation

Static HTML

Client-side
rendering

Web 1.0 5 Wetk

\\

Server-side [
: computation 0
i JavasScript :
: Static HTML + DHTML :
' |
[[|
[I Client-side
: Client-side & 5 : computation
\ rendering ‘ @ ﬁ

Web App Challenges

A Code complexity: more client-side code
I Ex. Maps.live.com: 1MB of code, 70k LoC
I Bugs, race conditions, memory leaks, ...
A Non-standard execution environments
I Many APIs differ across browsers
I Perf of simple ops vary 10x-100x across impl.

A Third-party dependencies (e.g, mash-ups)

Missing: Visibility into behavior on clients

Outline

. AjaxScope Platform
. Expt: Adaptive instrumentation

. Expt: Distributed instrumentation

. Conclusions

AjaxScope Approach

—— —

Web AjaxScope
application proxy

& — — ¥ instrumented lavaScript

Goal: Detailed visibility into app behavior in the client
Approach: On-the-fly rewriting to add instrumentation

Key Enabler: Instant re-deployability of web apps

Monitoring Goals

A Performance Optimization
A Performance profiling
A String optimization; cache placement; ...
A Code splitting and joining
A Debugging
A Report function arguments, app state, errors
A Memory leak checking
A Statistical debugging

A Test

A Code coverage
A A/B tests

A Operations
A Measure RPC network latencies

A User interaction feedback
A What features are being used / discovered?

Approach: JavaScript Rewriting

A Simple but powerful monitoring
I Inspect application state
I Observe control flow
I Limited only by JS sandbox
A Easy deployability
I No changes required to original web app
I No changes to client-side browsers

Example: Record Function Args

1. Search JavaScript AST for function definitions

2. For each function definition, add a statement to
report every argument.

function foo (a,b) {
of

function foo (a,b){ sendLog (hnval ue
// do something sendLog(nval ue of
} // do something

}

sendLog() queues up messages for bulk reporting to AjaxScope

o o

Deploying AjaxScope...

3" Party Service

Server-side Deployment

Our Prototype (Client-side)

J - ®

My Service

<:>

AJEXSCOPE \
Researcher
@//_g Party Service

@ ¢ > AjaxScope Proxy < >

Rewritten
Web Page

Logs Log
Collector

Web

Rewriting Page

Engine

Instrumentation #1

~< APluggable policies \

m A Controls rewriting based
on incoming logs

A Platform support for
adaptive and distributed
instrumentation

Rewr | ttle-f 1 @1

A Service has tight control over code running at client
I Clients always download new version
I Cache-ability controlled by service

A Enables dynamic instrumentation

A Use to reduce performance overhead
1. Adaptive instrumentation
2. Distributed Instrumentation

A Also enables A/B tests to compare versions

Outline

3. Expt: Adaptive instrumentation
4. Expt: Distributed instrumentation

5. Conclusions

Experimental Setup

A Profile 90 web sites’ “startup”
I Client-side AjaxScope

e —S o

maps.google.com 1935
r§° maps.live.com 924 2855 190
msn.com 124 592 300
Tg yahoo.com 278 1097 670
E google.com/ig 135 960 190
protopages.com 599 1862 13780

+ 6 more JS-heavy news & game sites

+ 78 sites randomly chosen, weighted by
popularity

Adaptation: Drill-down Perf Profiling

A Naive: Add timestamps everywhere

I Too expensive! (both CPU and logging BW)

A Instead, auto-drill-down based on user

experience

<script>
LogTimég);
FastFuncl();
FastFunc?2()
SlowFunc();
LogTimég);

</script>

E)

<script>
LogTimeg);
FastFuncl();
LogTimeg);
FastFunc2();
LogTimeg);
SlowFunc();
LogTimeg);
</script>

<script>
FastFuncl();
FastFunc2();
SlowFunc();

</script>

function SlowFunc() {
/1 drill -down continues|

}

Perf Overhead

300%

250%

200%

150%

100%

50%

0%

Adaptation Results

e Full Profiling =——Drill-down Profiling

Web sites

Avg 30% reduction in
CPU Overhead

 Full Profiling —Drill-down Profiling

10,000,000
1,000,000
100,000

10,000

P~
= O
o O
o O

Logging BW Overhead
(bytes)

[EEY

Web Sites

95% Avg Reduction in
Logging Bandwidth

Outline

4. Expt: Distributed instrumentation

5. Conclusions

Monitoring for JS Memory Leaks

A Mem leaks major problem in older browsers
I Web apps can work-around

AE.g., Circular reference across DOM +
JavaScript memory heaps

A Instrumentation looks for runtime patterns
indicative of leak

A Expensive! Use distribution to reduce per-user
overhead

Example: CNN.com

var pipelineContainers = .
document.getElementByld (" cnnPipelineModule First, get DOM

getElementsByTagName ('div") ; elements

for (var i=0; i<pipelineContainers.length; i++){

var pipelineContainer = pipelineContainers [1];
If(pipelineContainer.id.substr (0,9) ==" plineCntr ") {
pipelineContainer.onmouseover = function ()
{ CNN_changeBackground (this,1); return false;}
} Then, set their event
} handlers to a new

function

Example: CNN.com

var pipelineContainers
document.getElementByld (" cnnPipelineModule ").

getElementsByTagNa

for (var i=0; i<pipelin ntainers.length; i++){

[i| JavaScript
el Object

function ()

function closure referencgspelineContainer

Checking for Memory Leaks

Check all object assignments for potential cycles

a.b =c;

ab =c I

TraverseHeapAndCheckForCycles (c, a);

ADistribute expensive traversals across users
AEach user gets random N% of checks
AControls per-user overhead

Distribution Gives Fine Control
of Per-User Overhead

2000 p--rennrenr s
1800 -
£ 1600 -
Q 1400 -
1200 -
1000 -
800 -

ms)

600 -
400 -
200

0

Baseline

Cnn.com Startu

0% 20% 40% 60% 80% 100%

% of cycle checks distributed to single user

Trade-off per-user overhead vs. detection speed

Outline

. Motivation

. AjaxScope Platform
. Expt: Adaptive instrumentation
. Expt: Distributed instrumentation

. Conclusions

Related Work

A JavaScript rewriting for safety & security

| BrowserShield and CoreScript
A Monitoring and tracing systems
| E.g., Magpie, Project5
A Dynamic and adaptive instrumentation

I In parallel computing cluster: ParaDyn

A Runtime program analysis for bug finding
| Statistical debugging, taint analysis, ...

Future Work

A Platform improvements:
I Integrate caching considerations into rewriting
I Limit risk of bad rewriting with meta-monitoring
I Improved information protection

A Collecting data and analysis:
I Compare executions across users to find outliers

I Collect dynamic call graphs to inform smart
prefetching

Conclusions

A End-to-end visibility into client-side web app
I Requires no client-side / server-side changes
A Distribution and adaptation controls overhead
I While maintaining high coverage & detail
A Demonstrated variety of instrumentation policies

I Performance profiler, memory leak checker, cache
placement, ...

A Download and extend the prototype
I http://research.microsoft.com/projects/ajaxview/
I Supports plug-ins for new instrumentation policies

http://research.microsoft.com/projects/ajaxview/

(this page intentionally left blank)

